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1 Introduction.

The Specialty Hardware Supplement (SHS) to the JTRS Software Communication Architecture (SCA) Specification provides standards and development guidelines to make hardware enabled data flow (HEDF) software more flexible and more portable.  This supplement defines a Hardware Abstraction Layer (HAL), specifies requirements for the development and documentation of HEDF software, and sets standards for common functions and an Antenna Application Programming Interface.

1.1 Scope.

This document supplements the SCA Specification by specifically addressing the software developed on specialized hardware (Field Programmable Gate Arrays (FPGA) and Digital Signal Processors (DSP) and ASIC’s). In general, this genre of components is characterized by a set of such specialized hardware components and hardware devices that are connected via special purpose data buses.

The requirements specified in this supplement are intended to mitigate such problems as the current lack of operating systems in DSPs and the different computational paradigms used in DSPs (central processing units), FPGA’s (data flow) and ASIC’s (data flow) as well as as network processors and special function devices that are as programmable as GPP’s. This supplement also provides guidelines to support moving software across DSPs and FPGA’s, as well as ways to mitigate the effects of performance optimization on portability. This supplement assumes that the existing Core Framework support for the loading and execution of non-CORBA compliant components will continue.  Where this support has been extended to meet the needs of software components running on Specialized Hardware (i. e., XML profile changes and core framework extensions for HAL), the extensions are discussed in this supplement and changes to the SCA proper have been made via SCA Change Proposals.

While this supplement specifically addresses DSPs, FPGA’s, and ASIC’s, it is intended to be generic enough to apply to emerging hardware such as computing grids and partially loadable FPGA’s network processors and special function processors.

2 Reference Documents

3 Waveform Specification and Porting
3.1.1 Introduction

This supplement to the SCA provides requirements for waveform specification and porting documentation artifacts. The artifacts described here are not currently required by the SCA but are considered by leaders of the SDR / SCA development industry to be critical in ensuring that waveforms can be ported to many SDR hardware platforms resulting in consistent interoperable performance inspite of evolving hardware and processor implementation choices.  These waveform specification and development artifacts are so vital to waveform porting and interoperability performance assurance, that the JTRS community may choose to add these supplementary documentation requirements to waveform development contracts to save costs over the initial and subsequent waveform porting efforts, and to ensure that top down waveform development processes are followed.

These waveform artifacts are also critical to specification of waveform signal processing in applications where the waveforms are defined by high performance signal processing architectures.  It is recognized that some signal processing architectures, such as FPGAs, or applications, such as extremely high data rate modems, may not readily lend themselves to Software Object Oriented Techniques and CORBA. For these applications the library waveforms must still be rigorously specified, defined and portable across multiple generations of FPGA and DSP technology.

This section of the SCA supplement, defines a hierarchy of rigorous waveform specifications in the form of executable specifications (models) which are traceable to the original waveform requirements documents. These waveform specifications include a Platform Independent Model (PIM), and Platform Specific Model (PSM), and the as built waveform. Associated with these executable models are test benches which provide for interoperability testing, regression testing of system and component functionality, and assurance of performance traceability between the as built product and the requirements.  This hierarchy of waveform requirements, and executable models is indicated by figure 4.1.

put figure here from library2.ppt

Figure 4.1 This notional hierarchy of waveform specifications traces performance requirements from the DOD requirements documents through an executable Platform Independent Model, to a Platform Specific Model, and finally to an as built model.  The associated documents provide for detailed interoperability and performance analysis, and product optimization.

3.2 Background 

3.2.1 Intent

The intent of this section of the waveform supplement is to provide specific documentation requirements that support waveform portability, performance requirements analysis and traceability, and high performance waveform design. The JTRS may choose to require any or all of these documents applied specifically to each waveform development program. 

3.2.2 Applicability

It is expected that that in cases where a waveform will be ported to more than one radio set platform, the incremental costs of this extra documentation will be rapidly recovered in reduced interoperability costs, and reduced porting costs.

These documentation artifacts will also provide the government with detailed performance traceability to the original requirements, implementation loss analysis, noise analysis, limit and abnormal signal condition analysis, all leading to more robust operation under the wide variety or real world conditions, and thus more robust products for the warfighter.

For high performance waveforms, or for platforms where size, weight, power or cost are driving requirements, these analyses may also lead to improved size, weight, power or more cost effective implementations, due to a detailed understanding of exactly how much signal processing complexity is required in each software or signal processing component.

3.2.3 Scope

This document lists waveform artifacts that are a normal part of a systems approach to top down waveform design.  

The customer will choose which of these artifacts are required on a per waveform basis. We recommend that waveforms that are to be ported to more than one radio set architecture, or waveforms that are being newly developed from performance requirements should be required to provide all of these documentation artifacts to the JTRS library. 

We define these documentation artifacts to be specifically separate from the normal documentation associated with waveform installation into a radio set architecture which are part of the standardized SW development process, as described later in section 4.6.

3.2.4 Definitions 

3.3 Top Level Waveform Specifications Standardization

3.3.1 Requirements and Goals


The purpose of this section is to provide guidance and requirements to standardize the way radio waveform specifications are written and documented for the purpose of uniformity, understandability, and portability of the waveform to different host platform architectures.

3.3.2 Approach
3.3.2.1 Use OSI Model as Starting Point


Radio waveforms shall be specified and developed in a formal manner. Waveform specifications flow down from system requirements through a Platform Independent Model (PIM) which is executable and forms a rigorous and testable specification of the waveform and its interoperability specification and its implementation losses if implemented in fixed point signal processing. This model is further formally modified to be the Platform Specific Model (PSM) which further defines processor specific implementation considerations and further provides traceability of interoperability and performance back to the original requirements.  Test data documents the performance of components providing for component testability of ported waveforms. As a minimum, test data must be provided to document behavior at each layer of the OSI protocol stack of a complete waveform (radio application).

3.3.2.2 OSI Model Short comings


The OSI Model is well known to people skilled in the art. Numerous articles and dissertations, in text books and on the internet, describe each layer and the standardized protocols (shown in figure) associated with each layer. Little, if anything is said about the real time aspects of the model, and there is nothing in the literature to standardize on how one describes real-time requirements. The next section defines the beginnings of a Canonical Radio Template that addresses both deficiencies.

3.3.3 PIM Top Level end to end Canonical Radio Template


Figure 4.3-1 highlights the notion of defining Physical Components and the notion of Radio System Timing and Orchestration Components. Also depicted is the notion of vendor specific PSM devices into which the PIM functionality shall be partitioned into, compiled for, and ported to, by the hardware platform developer.
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Figure 4.3-1

Figure 4.3-1  Cononical PSM Waveform Architecture includes all RF modem physical layer parts, OSI stack processes, Transec and COMSEC processes, Applications, timing and control, and some indication of process allocation to various processor types


The top-level Canonical Radio Template is used to facilitate a top down specification that decomposes a waveform into OSI Layers and then into a collection of Class-based common functions (Components) that are interconnected and Orchestrated. Use of this template should prove to save cost on initial design and re-ports for the following reasons.

1
All contractors use an Industry standard template to define a PIM. 

2
All Components within the model are independent of device drivers.

3
Component-based specifications provide well defined, non arbitrary interface 
boundaries

4
Necessary RF and Antenna control paths are incorporated into the template 
model.

5
JTRS JPO has control and understanding of developed waveforms because 
delivered documentation is in a consistent format for all radio systems, allowing 
the JTRS JPO to make more effective decisions and bound porting costs.

6
The current SCA Core Framework will serve as the model for loading and 
deploying components.


In summary, the radio template proposed has a direct mapping into the networking industry standard seven layer model for network protocol architecture called Open Systems Interconnect (OSI) model. All functions called out in a radio specification are mapped into the augmented top-level OSI model described above.

3.3.3.1 Forcing Radio Specifications into Canonical Radio Template


The Augmented OSI Model is defined in this addendum as the top-level, Component-based, Canonical Radio Template. The approach taken by the Radio System developer, is to parse radio system requirements into the OSI Layers of the Canonical Radio Template, and then into Radio Components, such that, when interconnected together in a PIM, the ensemble of components shall unambiguously describe the required behavior of that Layer, have clear concise API’s (input files and out put files) and be testable and execute in real time. 


The above shall be repeated for each OSI Layer. The end to end Radio System Specification will then be defined as the functionality of all the OSI Layers together with an OSI Layer Interconnection Specification.  A method for execution control (Orchestration function) will provide the timing and control function for moving data between Layers, regardless of where or in what end item PSM devise (GPP, DSP, FPGA) it will be executed. 

The above Template / Component based methodology allows the government to create a well organized, Reusable, Class structured Document Library of Component Objects for each Layer of the OSI Model. By requiring components to be parameterized, their reuse in other radio systems is greatly enhanced. 

3.3.3.2 New Items to the Core Framework


New items to the core framework include both an 



STD (software timing descriptor)  and 



SQD( software quality of service descriptor). 


Since the core framework worked independent of a Timebase it has operated independent of precise timing control. Components are executed in succession and are specified to do their job within a specific time limit, such that all components in the chain are specified such that they complete their tasks before the next slot, frame , or epic occurs.


 For physical, data link, and in some cases the network layers where tight time constraints need to be imposed, a Timebase Orchestration function provides the precise timing of component execution throughout the Radio System. 


STD / SQD XML files shall be used to define the timing requirements of components effecting real time waveform performance. The SQD file will be used to constrain the Application Factory from assigning a particular component to a PSM device (GPP, DSP, FPGA, ASIC) that can not meet the timing requirements.

3.3.3.3 Relationship of PIM to PSM and Testability


As stated throughout this document the PIM is comprised of a set of OSI executable Layers that unambiguously define the required functionality each layer of the specific Radio System at hand. These layers together with layer to layer interconnection, and timing and execution orchestration, completely define the end-to-end Radio Waveform functionality.


The PSM for each radio manufacturer can choose to implement the PIM functionality on different vintages of the same type of hardware devices (Altera vrs Xylinx FPGA’s, TI vrs Intel DSP, etc), or on a completely different set or mix of Hardware devices (GPP, DSP, FPGA, or GPP, DSP, or GPP, FPGA). The PIM provides the reference model and measure of performance that must be met after porting to the specific hardware devices.


To put some order and measure of performance criteria into the porting effort, this addendum specifies that performance testing be done for each layer of the OSI Model, even though the functionality of that layer may be spread across a GPP, DSP, and an FPGA. This allows performance criteria to be placed at the OSI layer boundaries, and allows the porting effort to trade where to place each PIM Component (Message Assembler, Interleaver, Sync Appender, Serializer, Modulator, etc) in the hardware architecture (GPP, FPGA) to meet the end-to-end performance of say the waveform. It is further encouraged that testing data be available for each component within the RF modem to assure performance and interoperablity.

3.3.4 Component Definition 

Components at any layer of the OSI model at their respective interfaces shall have the same “look” and “feel”. The Signal Path portion of a Component includes Input Ports, an internal Transformation Function, Output Ports, Static and/or Dynamic Control Ports.  Static parameters can be considered as initialization configuration data, that stays constant for long periods of time. Dynamic parameters could be control values that change during the lifetime of execution of the waveform. These values could be events, radio states, Transec derived structures, PN coverings, etc. Components shall also have an execution control mechanism. Components shall be able to support Sequential, Pipelined, Streaming and Parallel operations. Components can be viewed as a black box with standardized ports as depicted in figure 4.3-2.
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Figure 4.3-2 Components will have a standardized look and feel with standardized interface and transformation ports
3.3.4.1 Executable Component Data Sheet Specifications


This section expands upon the component definition and introduces the concept of a Component Data Sheet as a means of providing textual and visual insight into a thumbnail description of what function the Component performs, the external ports of the component, an executable set of code written in a neutral language that precisely and unambiguously defines the Transformation function that the component performs, and a set of nominal Test Vectors and expected responses for executing the component without having to think.

3.3.4.1.1 Data Sheet

Text Description 

The textual description describes the component algorithm in the most general way independent of any tools, or languages, or architectures. It is strictly behavioral. An accompanying block diagram is recommended that describes the algorithm in its behavioral form.


Interface Port Specifications
The IPS identifies all ports, data types necessary to operate on data in the data path, output path, static,  run time parameters and dynamic data which can change as a function of state or timing.


Modeling and Executable Specifications

MATLAB Simulation of the Transformation Function that executes the textual functionality and conforms to the interface ports and data types.


Test Data


The data sheet shall contain a set of Stimulus Test Vectors and Response / Expected Results to allow a user to run the component to verify its operation autonomously.  External to the Data Sheet there shall be a document containing an exhaustive set of Stimulus Test Vectors and expected Responses that were used during the PQT and FQT Qual Testing of the component. The test data must be sufficient to validate interoperablity, exception, and worst case conditions performance analysis, thereby supporting porting to various architectures.

3.3.4.1.2 OSI Layer Data Sheet


The Data sheet for a PIM OSI Layer shall follow the format of a PIM Component Data sheet.  It shall have a thumbnail description of the functionality of the layer, a listing of the instantiated components that make up the OSI layer, including the Component Interconnect, Timing and execution orchestration components, and a few sets of Stimulus and Response vectors for executably illustrating end to end functionality.


In a separate document there shall be an exhaustive set of Stimulus / Response test vectors that test all corner cases and out of bounds fault reporting, etc.

3.3.4.1.3 Radio system Data sheet


This data sheet shall follow that of the above defined OSI Layer data sheet, except it shall list the OSI Layer Data Sheets together with the Interconnect, Timing and Execution orchestration functions, that tie the layers together as a system.  By mandating the Data Sheet concept for the PIM for all future procurements, there will be a clear understanding of the functionality requirements in each and every layer. 

3.3.4.2 Documentation Artifacts


In addition to the PIM Component based Data Sheets as listed below:



Component

The smallest element



OSI Layer

List of instantiated Components



Radio System

List of Layers

there shall be a legacy set of documents provided; however we should specify some formatting changes to some of the documents to reflect the OSI Layered Canonical Radio Template way of doing business as previously described in this addendum.

3.4 Platform Independent Model (PIM) Executable WF Spec

3.4.1 Introduction

The PIM Executable Waveform Specification consists of a floating-point model, a fixed-point model, a network model, and test data. In addition to an RF modem function, some waveforms may also include 1) a model of source coding or other application that is an inherent part of the SDR radio application, 2) an unclassified simplified model of COMSEC and TRANSEC functions which serve to show how the COMSEC and TRANSEC functions interact with the modem, network, and applications.

3.4.2 Terminology

Some terms used in Section 4.4 are listed here.

Platform Independent Model (PIM) – an abstract high-level behavioral model of a waveform.  A PIM contains the information necessary to define and characterize how the waveform performs and behaves in a manner that is traceable to the waveform requirements specification documents.  Signal flow, control flow, and networking aspects of the waveform are described.  Information used to describe these aspects include:

· Key waveform subsystem boundaries (e.g. speech codec, modulator, FEC, INFOSEC, etc.)

· Subsystem jitter, latency and timing requirements

· Subsystem processing requirements (MIPS, FLOPS, memory etc)

· Signal port sample times where appropriate

· Correct numerical results

· Signal and parameter data types (e.g. double-precision floating-point, 16-bit integer, etc.)

· Signal and parameter dimensions (e.g. array or matrix sizes, number of samples, number of channels) and special formats (e.g. bit-reversed FFT data)

· Signal and parameter complexity (real or complex)

· Control of the flow of data throughout the waveform (orchestration)

· Networking model

Executable PIM – a build-able and run-able version of a Platform Independent Model (PIM) on a GPP-based host machine using an industry standard operating system (e.g. Windows, Linux, UNIX, etc.) and commercially available software tools.

Test bench – executable software and associated data used to validate and verify a waveform component, set of components (subsystem), or full system versus various requirements.  Ideally this same software and data may be used to later validate (or re-validate) the Executable PIM against an as-built reference implementation (Platform Specific Model) and/or against some other ported implementation (PSM).

Test harness – a software environment in which test benches may be executed against which Executable PIMs and PSMs can be verified and validated. The test harness will consist of commercially available and identified testing software and of library software components that allows interfacing the test data to the porting developer’s modeling and simulation environment.

Waveform Component – a generic and abstract term with multiple meanings.  In this section, a component will be used to refer to a building-block unit of waveform functionality consisting of signal inputs (as needed), signal outputs (as needed), parameters (as needed), stored values (as needed), and behavioral rules (e.g. algorithm, equation, transformation description, etc.).  Thus a waveform component may be used to describe something as simple as a bit-wise comparator or a complicated as a demodulator.

Subsystem – an interconnected set of waveform components making up a portion of a full waveform system design or implementation

Floating-point – a signed binary numerical representation and associated arithmetic involving (usually IEEE 754 standard) representation of approximations of real-word values using a mantissa and exponent.  Floating-point numbers may be expressed over a wide range and varying amounts of precision based on the values used.  Single-precision refers to 32-bit floating-point word lengths.  Double-precision refers to 64-bit floating-point word lengths.

Fixed-point – an integer based binary numerical representation (usually, but not always, twos-complement) and associated arithmetic.  Typically fixed-point values are approximations of real-world values with a chosen (“fixed”) precision and fixed range.  Fixed-point values are typically by signed-ness (e.g. via a sign bit to indicate signed or unsigned data), word length, and fraction length (or equivalently binary point location or alternatively a numerical weight placed on the least-significant-bit which sets the precision of the chosen representation).

3.4.3 Motivation and Intent

A Platform Independent Model Executable Waveform Specification (henceforth to be abbreviated “Executable PIM”) is essential to the original overall goal of reducing code portability cost for embedded waveform software.

Ways that the Executable PIM reduces porting cost are as follows:

· Reduces initial design defects and consequently ported implementation defects

· Reduces overall WF software and test development for the porting effort

· Encourages initial WF design and WF component testability and portability

· Encourages clear WF design and understanding before initial implementation

· Encourages clear communication of the WF design across development efforts

· Significantly eases subsequent code porting to alternative hardware platforms

Reduces initial design defects and consequently ported implementation defects:

The waveform simulation and associated test benches are implemented by the initial developer of the PIM executable waveform specification and later used by the porting developer. Thus the porting developer has access to a trusted testable resource early in the porting effort allowing early identification of ported implementation defects.

Reduces overall WF software and test development for the porting effort:

Many in industry begin waveform design in a floating-point modeling and simulation environment, and subsequently evolve the design in finer detail, gradually integerizing the signal processing component-by-component, at the same time creating a complete testable database against which to validate and debug the final ported implementation.  Traceability back to the rigorous executable (possibly floating-point and/or possibly fixed-point) waveform specification is a critical beginning of a top down and iterative design process.  This design approach is essential to separate the hardware-specific issues from the algorithm component and system design issues that must be addressed before the porting process may commence.  Having a trusted path to verification of ported implementations via the full system and component unit tests developed during this process demonstrates the implementation losses, makes the porting process easier, faster, and more cost effective. 

Encourages initial WF design and WF component testability and portability:

The generation of the PIM encourages detailed consideration of porting requirements during the original WF development. 

Encourages clear WF design and understanding before initial implementation:

The porting developer can perform system design iterations with test of the design viablitity using the test benches.

Encourages clear communication of the WF design across development efforts:

An executable specification is more apt to be complete than a paper specification.  The PIM executable waveform specification can be shared among all development engineering, test engineering, and project management teams involved in the waveform development and porting process.

Significantly eases subsequent code porting to alternative hardware platforms

This PIM executable specification is intended to:

1)
Maximize the efficiency of porting a waveform from the JTRS JPO library to a new SCA compliant architecture with different processor resources (different processor manufacturers, different amounts of DSP / FPGA). 

2)
Enable reuse of waveform signal processing objects.

3)
Include the waveform in a variety of modeling and simulation environments for validation of correct operation, testing of porting and evaluation between ported waveform implementations.

3.4.4 Requirements for a PIM Executable WF Spec

The PIM Executable Waveform Specification models must be written in a portable manner.  These models should be high-level, numerically accurate models, without regard to a particular technology.  These models must not be designed to execute on a specific host machine or processor type, but should support multiple common host platforms.  The models should be generically coded and easily retarget-able.   Language portability is essential, whether a text based or graphically based language is employed in their implementation. Ideally, the modeling tool will have the capability of transforming the model into the C or C++ language for DSP or GPP or into VHDL for FPGA implementation.

The executable specification shall include all scripts / block sets / functions / subroutines / classes that are not part of a commercially available library packages that are needed to make the executable specification work.

Test harnesses are used to generate and run unit (component) test benches as well as system and subsystem test benches in order to generate test data traceable to WF requirements and thereby define interoperability.

The PIM Executable Waveform Specification models run on a GPP-based host machine (not necessarily in real-time).

The PIM Executable Waveform Specification model structure is traceable to WF requirements and covers the whole WF (microphone/loudspeaker/display/data I/O to RF antenna I/O).

The PIM Executable Waveform Specification software is written using industry standard language(s). Instructions for recreating/building, running, and testing must be provided. The software included is complete except for identified commercially available components. The software shall not depend on unavailable or proprietary components.

3.4.5 Structure of a PIM Executable WF Specification

3.4.5.1 Overview

The high-level structure of a PIM Executable Waveform Specification is shown in figure 4.4-1 below. A PIM Exec WF Spec consists of a floating-point model, a fixed-point model, a network model, and test data.
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Figure 3.X.X  High level PIM waveform Specification must be executable. Test data provides for interoperability testing, performance analysis, and porting validation.

3.4.5.2 Floating-point Model

Floating point simulation on GPP-based host machine; creates and runs floating point testing (component and sub-system and system-level); defines interoperability; abstract WF architectural description; executable networking model and physical layer provided; written in industry standard language(s); instructions for re-creating/building, running, and testing provided; traceability to requirements, etc. 

3.4.5.3 Fixed-point (Integer) Model

Fixed point (integer) bit-exact simulation on GPP-based host machine; creates and runs bit-exact fixed point (integer) testing (component and sub-system and system-level), including complete rounding and saturation error analysis and compared to floating point model; defines interoperability with possible implementation loss; abstract WF architectural description; executable networking model and physical layer provided; implementation loss analysis (e.g. quantization noise, dynamic range limits); defines saturation and rounding methods throughout signal path; written in industry standard language(s); instructions for re-creating/building, running, and testing provided; traceability to requirements, etc…

3.4.5.4 Network Model

In addition to modeling the RF modem, the PIM must also include a model of the network functionality that rides above the physical (RF modem) layer. This should demonstrate Media Access Control (MAC) layer, and link layer protocols, and any additional network layer functions required to express interoperability and all functionality details.

Network modeling may also include bridging and routing functions amongst multiple nodes, and nodes with varying protocols or varying waveforms if that is part of the waveform definition.

This networking model does not refer to the internal data transport mechanism amongst processors in of the host radio but rather is a model of the waveform application networking. For example, basic SINCGARS would not include a network model, but SINCGARS ESIP would include a networking model.

3.4.5.5 Test Data

Test data for the floating-point and/or fixed-point model(s) (traceable to WF requirements) that has been applied to tests of the pre-port waveform. Also useful for verification of legacy or “as ported” PSMs.

3.4.6 What Goes in the Library

· Executable GPP-host-based floating-point model and/or fixed-point model

· Executable GPP-host-based floating-point and/or fixed-point test harness

· Floating-point and/or fixed-point test data

· Model Users Manual(creation/building tools and instructions, simulation execution instructions, test execution instructions, files for all the above)

· List of required commercially-available software and hardware components required to create, build, and run the Executable PIM and associated tests

3.4.7 Example SW Tool Environments for PIM Exec WF Spec SW

Any of the following software tool environments or techniques is suitable for executable PIM modeling:

Simulink

MATLAB

OPNET

C/C++  (If C/C++ are used, then the complete simulation environment must be provided)

3.5 SCA Waveform Documentation Artifacts Description 

3.5.1 Standard Waveform Documentation

The Standardized Software Development Process provides for the following documents. We describe them here in greater detail, to assure common understanding of what should be in each of these standard SW development process documents.

1) Waveform Requirements Specification (WRS): The WRS shall conduct complete waveform requirements analysis tracing requirements to Waveform Performance Specifications to ensure all requirements (e.g., simultaneity requirements, requirements for timing services, derived requirements, etc.) are met.  The WRS shall contain an analysis of the requirements. The WRS shall organize the requirements, present anomalies, and discuss a high-level approach for implementing the requirements.

The WRS shall document the waveform's functional requirements, external interfaces, performance requirements, quality goals, and design constraints.  The WRS shall contain the allocation of requirements to be met by each system component and shall allocate performance requirements.  The WRS shall identify requirement anomalies such as redundancy and non-testability.  The WRS shall identify risky or critical requirements

External interface requirements shall cover both user interface requirements and the requirements for interfacing to JTRS Operational Environment (OE) and Radio System Applications.  The WRS shall specify any performance requirements necessary to address selectivity, sensitivity, emission characteristics, I/O control, and simultaneous operation of multiple waveform instantiations.  


2) The Waveform Design Specification (WDS): The WDS documents the entire waveform design, its functional decomposition, hardware/software partitioning, derived hardware performance requirements, and associated portability constraints.  The WDS shall identify and document all derived requirements and associated waveform data that will be required for JTR Set design, development, and integration. The WDS shall include waveform radio frequency (RF) and electrical performance requirements, high-level software requirements, and hardware related requirements. Since the creation of a complete waveform requires a combination of software elements and hardware components, the waveform design activity shall identify proposed hardware/software segmentation and corresponding interfaces.


3) Waveform Software Development Plan (WSDP): The Waveform Software Development Plan (WSDP) shall contain the content as defined in DI-IPSC-81427A. The WSDP shall contain both hardware and software considerations that need to be addressed in the waveform development, testing, and acceptance test activities.  The WSDP shall encompass the development, management, and engineering of the waveform. The WSDP shall also include software product evaluation plans and software acceptance for all categories of software and documentation. 


4) Waveform Software Requirements Specification (WSRS): The WSRS shall conduct complete waveform software requirements analysis tracing requirements to Waveform Requirements Specifications to ensure all requirements (e.g., simultaneity requirements, requirements for timing services, derived requirements, etc.) are met with content as defined in DI-IPSC-81433A.  The WSRS shall contain an analysis of the software requirements. The WSRS shall organize the software requirements, present anomalies, and discuss a high-level approach for implementing the requirements.

The WSRS shall document the software's functional requirements, external interfaces, performance requirements, quality goals, and design constraints.  The WRS shall contain the allocation of  software requirements to be met by each waveform software component and shall allocate performance requirements.  The WRS shall identify requirement anomalies such as redundancy and non-testability.  The WRS shall identify risky or critical requirements

External interface requirements shall cover both user interface requirements and the requirements for interfacing to JTRS Operational Environment (OE) and Radio System Applications.  The WRS shall specify any software performance requirements necessary to address selectivity, sensitivity, emission characteristics, I/O control, and simultaneous operation of multiple waveform instantiations.  



5) Waveform Software Design Description (WSDD): The software design shall be documented in WSDD with content as defined in DI-IPSC-81435A.  Along with the source code listings, the WSDD is a primary part of the Waveform Software Product Specification (WSPS). The high-level design shall describe the components comprising the waveform application.  For each component, the WSDD shall describe its interfaces, including the identification and selection of software classes and information on the relationships among them.  The high-level design also includes the definition of attributes and operations for all identified classes.  The high-level design defines the interactions among the identified components and the behaviors of major classes.  Object-Oriented Design approach and Object-Oriented graphical notations shall be used for the high-level design.  The high-level design shall address the constraints and developmental approach for each component of the system design with the necessary interactions and logic defined.

The high-level design shall contain the system overview, identification of listed and derived requirements allocated to each SCA component, concepts of how each high-level software component will execute, system resource limitations and the strategy to manage each system resource, and the rationale for the software architecture and component design definition decisions.

The high-level design shall include but are not be limited to the following topics:

· The decomposition of the software design and impacts on the JTRS Set design

· The specific SCA interfaces, APIs, communication protocols and appropriate device drivers

· The SCA domain profile information

· The design for portability of the waveform application.

· Requirements traceability

The WSDD shall contain an interface design analysis for the waveform application.  The interface design at a minimum shall address the following, as applicable: 

· The required SCA port interfaces

· The identity of all APIs to be developed as part of the waveform application

· The interfaces between components (ports); identification of MMI and SCA interfaces 

· The usage of operating system features

· The usage of CORBA and CORBA services.

The WSDD shall contain the software detailed design that represents the partitioning of the software system into its constituent design units and describe the important attributes of each and the relationships among the units.  The WSDD shall contain the software detailed design to show how the waveform application is designed and structured to satisfy the requirements allocated from the WSRS.  The detailed design  shall trace the requirements listed and derived into the descriptions of the software components and interfaces.  Each requirement from the WSRS shall be traced to one or more design units.
The design of each software functional unit (module) shall fulfill the software requirements allocated in the software detailed design. The unit’s function, its inputs and outputs, plus any constraints (such as memory size or response time) shall be defined.  The detailed design specifies the logical, static, and dynamic relationships among units.  Object-Oriented Design and Object-Oriented notations shall be used to represent all aspects of the detailed design.  The WSDD shall document the design of APIs in accordance with the SCA API Supplement.  

6) Waveform Software Product Specification (WSPS):  The WSPS shall contain the content as defined in DI-IPSC- 81441A. The WSPS shall contain the executable software, source code/files, and software support information, including “as built” design information and compilation, build, and modification procedure for the waveform application.  A WSPS is the primary software support document for a software configuration item’s life-cycle and defines and records major products of the requirement analysis, design activity, and implementation activity.  The WSPS establishes the baseline for the waveform application.  The SPS shall contain an as-built design description, source code, and traceability.

7) Waveform Porting Plan (WPP): The WPP identifies all modifications and actions anticipated to integrate a waveform design/implementation onto a Government-defined test environment.  The plan shall also identify the schedule, the resources required, and the required information regarding the target hardware set.

The WPP shall discuss how the waveform design/implementation will be used to support operation on different configurations of JTR Sets.  The WPP shall describe how porting of the software waveform to a variety of software operating environments can be accomplished.

8) Waveform Porting Report (WPR): A WPR shall be submitted to document all details associated with a specific port (e.g., changes made in the code, assumptions, hardware/software interactions, vendor interactions, etc.).  The WPR shall be submitted NLT 30 days after the successful port.


9) Waveform Application Programming Interfaces (WAPI): The SCA API Supplement identifies specific APIs associated with waveforms and standard documentation for controlling these APIs.  As a minimum the following UML diagrams for an API shall be provided:

Class Diagram(s)

Sequence Diagram(s)

State Transition Diagram(s)

Object Collaboration Diagram(s)


10) Waveform Software Test Plans (WSTP):  The WSTP shall define the Formal Qualification Test (FQT) environment, indicate and identify the resources necessary to perform the test, and identifies the level of testing necessary, and presents the test schedule and contain the content as defined in DI-IPSC-81438A.  The WSTP provides identification of required test facilities, equipment, and personnel and contains test milestone schedules and the waveform developers’s test readiness posture.  A table with a cross-reference of paragraph number of the specification requirement shall be included in the plan.  The STP shall explicitly address test requirements identified in the Waveform Software Security Report.

a.  Organizational Structure.  Provide a block diagram of key personnel, including their applicable element, to identify and facilitate points of contact.

b.  Waveform Flow Diagram.  A production flow diagram that identifies the inspection/test checkpoints, including the security inspection/test checkpoints, and references the applicable contractor documents that specify inspection and test criteria/procedures used throughout the manufacturing process.  The flow diagram, as a minimum, includes the following.

(1) A list of the types of testing that the waveform developer plans to perform during the development of the waveform.

(2) A list of the features, including security features, that will be tested and a description stating how the waveform developer plans to implement the test(s).

(3) A list of the test equipment that will be used to perform the testing and a brief technical description of their capabilities.


11) Waveform Software Test Description (WSTD):  The WSTD consists of test cases, scenarios, step-by-step procedures, and the data sheets to document the results with content as defined in DI-IPSC-81439A.  All failures noted during testing shall be reported.  The WSTD shall, as a minimum, include the following:

· A description of each test, the method/technique used to test and/or verify each specific function and the sequence in which the tests are applied.

· A cross-reference list that shows which WSRS requirement each test pertains to.

· The expected results of each test.

· Functional descriptions of the test setup and test equipment that is to be used.

· A description of all the software necessary to perform the test

· A copy of the programmer’s manual and user’s manual for any custom (contractor generated) test equipment that will be used. If using commercially available equipment, a part and/or identification number for the programmer’s manual and user’s manual shall be provided.

12) Waveform Software Test Report (WSTR):  The content of the WSTR shall be as defined in DI-IPSC-81440A. All testing related to the waveform software requirements shall be documented in the WSTR.  The WSTR shall document the software requirements and the functional performance of the of the waveform application. The WSTR shall describe all tests necessary to exercise the requirements documented in the WSRS and their results.  


13) Waveform Security Software Test Plans (WSSTP): The WSSTP shall define the Formal Qualification Test (FQT) environment, indicate and identify the resources necessary to perform the test, and identifies the level of testing necessary, and presents the test schedule and contain the content as defined in DI-IPSC-81438A.  The WSSTP provides identification of required test facilities, equipment, and personnel and contains test milestone schedules and the waveform developers’s test readiness posture.  A table with a cross-reference of paragraph number of the specification requirement shall be included in the plan.  The WSSTP shall explicitly address test requirements identified in the Waveform Software Security Report.

a.  Organizational Structure.  Provide a block diagram of key personnel, including their applicable element, to identify and facilitate points of contact.

b.  Waveform Flow Diagram.  A production flow diagram that identifies the inspection/test checkpoints, including the security inspection/test checkpoints, and references the applicable contractor documents that specify inspection and test criteria/procedures used throughout the manufacturing process.  The flow diagram, as a minimum, includes the following.

(1) A list of the types of testing that the waveform developer plans to perform during the development of the waveform.

(2) A list of the features, including security features, that will be tested and a description stating how the waveform developer plans to implement the test(s).

  (3) A list of the test equipment that will be used to perform the testing and a brief technical description of their capabilities.


14) Waveform Security Software Test Description (WSSTD): The WSSTD consists of test cases, scenarios, step-by-step procedures, and the data sheets to document the results with content as defined in DI-IPSC-81439A.  All failures noted during testing shall be reported.  The WSSTD shall, as a minimum, include the following:

· A description of each test, the method/technique used to test and/or verify each specific function and SW security feature, and the sequence in which the tests are applied.

· A cross-reference list that shows which WSRS requirement each test pertains to.

· The expected results of each test.

· Functional descriptions of the test setup and test equipment that is to be used.

· A description of all the software necessary to perform the test

· A copy of the programmer’s manual and user’s manual for any custom (contractor generated) test equipment that will be used to perform the security test. If using commercially available equipment, a part and/or identification number for the programmer’s manual and user’s manual shall be provided.

15) Waveform Security Software Test Report (WSSTR): The Content of the WSTR shall be as defined in DI-IPSC-81440A. All testing related to the Waveform Software Security Report (WSSR) requirements shall be documented in the WSSTR.  The WSSTR shall document the security requirements and the functional performance of the security aspects of the waveform application. The WSSTR shall describe all tests necessary to exercise the security requirements documented in the WSSR.  The WSSTR shall document the security requirements and the test results verifying the waveform security functions are performing as intended (including protective alarms and security features). 

16) Waveform Software Security Report (WSSR):  The WSSR documents the waveform security functions and their operations. In addition the WSSR documents the traceability of each software security requirement to a Software Requirement Specification (SRS) requirement and to a unit of code.  The security and software requirements are defined in the Software Communications Architecture, MSRC-5000SCA, Security Supplement to the Software Communications Architecture Specification, revision 1.1, MSRC-5000SEC (Security Supplement), and in JTRS Waveform Specifications.

The WSSR shall consist of two main sections: The functional description and the software security requirements tracing. The first section includes two sub-sections: a waveform functional description and the specific security requirements. The first sub-section contains a description of each waveform function.  The second sub-section addresses general security requirements, but in a general nature, encompassing all of the security and software requirements in the Security Supplement and JTRS Waveform Specifications applicable to the waveform.  This section should not contain a simple restatement of the requirements and goals. The second main section shall consist of three sub-sections. The first sub-section describes System/Equipment Detailed Functional Description and specific security requirement compliance.  The second sub-section (address by section and by requirement) describes in detail how each requirement and goal is to be implemented.  This section is not a restatement of the requirements and goals, but instead should reference them by section title and number within the respective section.  The third sub-section shall contain a matrix that traces each security requirement implemented in software to an SRS requirement and to a Unit(s) of code.   Note:  a unit of code is a self-contained function or routine containing executable code.  Each unit of code shall identify in the header the specific security requirements it meets or partially meets.

16) Waveform Software Version Description (WSVD):  The WSVD shall content the content as defined in DI-IPSC-81442A. The Software Version Description (SVD) identifies and describes a software version consisting of one or more Computer Software Configuration Items (CSCIs). It is used to release, track, and control software versions.

3.5.2 PIM Waveform Documentation Artifacts Description 

1) Waveform PIM Model User’s Manual (WPIMU): The WPIMU documents the necessary user’s implementation of the test harness that allows running the test benches for the PIM floating point, integer, and network models supplied by the developer from the user’s modeling and simulation environment.  All commercial software and hardware components that are required to create, build and run the executable PIM and associated tests shall be clearly identified.  The number of software modules that the user must develop in the test harness is minimized and each such module shall be clearly specified.  The supplied software modules of the PIM test benches along with make files to build the software shall be included in machine-readable form and shall be inventoried along with the version numbers of these files.  The instructions for the creation/building tools, simulation execution instructions, and test execution instructions shall be included along with any required software files required for these operations.

Traceablity to the WRS and the WDS shall be provided. The API’s in the test benches shall be documented using at least the minimal UML diagrams of the WAPI and shall be traced to the WAPI The WPIMTD shall meet the requirements of the WSTD and shall include test data for the PIM models including the expected output. The application and comparison techniques to the as-built PSM model shall be included. The results of these comparison shall be included in the WSTR.

2) WaveForm PIM Test Description: (WPIMTD): The WPIMTD shall meet the requirements of the WSTD and shall include test data for the PIM models including the expected output. The application and comparison techniques to the as-built PSM model shall be included. The results of these comparisons shall be included in the WSTR. The test data shall be provided in machine-readable form along with the description of the file and instructions for the files use.

4 SHS Abstractions

4.1 Hardware Abstraction (IAL) 

4.1.1 Purpose and Scope

The Interconnectivity Abstraction Layer (IAL) shall provide an abstraction of a vendor specific transport mechanism.  The IAL will allow Functional Components (FC) to pass data and commands to other FCs without knowledge of an underlying transport implementation.  It is expected that IAL will provide access to non CORBA or non Core Framework (CF) enabled processing elements from a CF environment in a standard and predicable manner without the CF components needing to know they are crossing any type of system boundary.

The IAL implementation shall be achieved without the support of a CF or CORBA.  But the IAL standard shall be integrated with the CF for the purposes of loading, configuration and control of functional components.  As such, IAL will need to address 2 distinct domains.  

The first domain is the Core Framework (CF) that already provides an interconnectivity abstraction between CORBA enabled processing elements.  Software resources in the CF domain will use the IAL APIs to gain access to the processing elements not accessible via the CORBA transport mechanism.  A CF enabled processing element will access the IAL abstraction via a SCA device implementation that has abstracted the IAL to a CF port interface. 

The second domain is the processing elements residing behind the interconnectivity layer.  These processing elements will not be CORBA enabled, typically FPGA and DSP hardware devices.  FPGA implementations, where the concept of a function call does not exist, will add another dimension to IAL’s implementation requiring further specification for FCs.  

The following figure shows the design concept of the IAL implementation. 
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Figure 2. IAL Implementation Model

The diagram shows how functional components of a system can be interconnected.  The box containing the protocol unique to platform implementation will be responsible for deciding how data or commands are to be delivered.  IAL will afford the functional blocks a known interface to which to send data.  

The interconnectivity specification will also include the concept of configuration of command and data endpoints to support the requirements of:

Sharing a pool of resources

Reallocating underutilized capacities

Lowering the cost of porting functional blocks to different platform implementations

4.1.2 IAL API

The proposed IAL API is illustrated in Figure 3: Proposed IAL API (C Version).  In this model, IAL entities are known as resources.  The IAL API is shown here in C, versus C++ or ADA, to better support portability between GPPs and DSPs.  As such, it is necessary to provide handles for resources.  These are opaque pointers which are used to identify the resource to which each operation applies. A resource may have more than one handle referring to it. Only when all handles are closed may the resource be destroyed. The use of a single handle type for all kinds of resources precludes compile time type checking thus if an invalid operation is attempted on a resource and error is returned. 
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Figure 3: Proposed IAL API (C Version)

Resources may be organized in hierarchies as defined in XML by the IAL System Definition Descriptor, thus each may have one parent and many children. Hierarchies may be navigated and certain resource operations (eg reset) may be performed on entire hierarchies.

The following classes of resources are defined. An actual resource may inherit from more than one class. (e.g. a lockable memory region)

All resources inherit the from a base IAL_Resource class. This class provides the following common resource operations:

	ial_open()
	Initialize a resource and return a handle to it. The resource may be the child of a supplied resource (handle) or it may specified to be a fully qualified IAL_Address. ial_open() with no parent or address opens the root resource. Optional qualifiers may be used for resource initialization (e.g. Link QoS).

	ial_free()
	Release resource and any children.

	ial_query()
	Query resource state and attributes

	ial_reset()
	Reset resource and any children


The IAL_Processor class is used to represent any programmable device (FPGA, DSP or GPP). Note that it is not expected that SCA Application components will use this interface since all loading and execution of code is achieved via SCA devices.

	ial_load()
	Load a binary image to a specified location.

	ial_unload()
	Delete binary image at specified location.

	ial_start()
	Begin execution at specified location with supplied parameters

	ial_stop()
	Halt processor execution.


An IAL_Processor may provide one or many IAL_Endpoints for communication. If many endpoints are provided, each is associated with a particular port number (logical channel). They may be used for connectionless (datagram) or connection oriented data transfer. In the latter case Endpoints must be bound together by an IAL_Link.

	ial_send()
	Connection oriented send. Transmit data to a destination end point that has been bound to this endpoint by a IALAL_Link. This operation provides both blocking (timeout) and non-blocking (callback by means of IAL_Event) semantics.

	ial_sendto()
	Datagram send to specified destination. Blocking or callback semantics.

	ial_receive()
	Obtain data received at endpoint. Used to receive both connection oriented and datagram data. Blocking or callback semantics.


An IAL_Link connects two IAL_Endpoints together. Multicast may be achieved by creating links between one source and many destinations.

	ial_bind()
	Connect one source endpoint to one destination endpoint, optionally specifying a route

	ial_unbind()
	Disconnects endpoints


An IAL_Processor may contain many IAL_MemReg resources which represent memory or registers. These may be read or written.

	ial_write()
	Write at specified offset

	ial_read()
	Read from specified offset.


Lockable resources export IAL_Lock operations. The implementation of these operations (counting lock, mutex lock) depend on the resource.

	ial_claim()
	Obtain lock. Blocking or callback semantics

	ial_release()
	Make it available again.


An IAL_Event resource represents either a physical interrupt or completion of  an operation invoked with callback semantics.

	ial_wait()
	Block with timeout until event occurs. Returns information from event.

	ial_set()
	Manually cause an event to “occur”.

	ial_enable()
	Enable the underlying event source.

	ial_disable()
	Disable the underlying event source.


4.1.3 Intended users.

The intended users of the IAL API will be processor enabled processing elements.   This is an intentional distinction from functional components that are loaded on a FPGA.  The components on the FPGA will implement an interface that will equate to the ial_send and ial_receive calls.  The infrastructure supporting the components on the FPGA will implement the functionality of the API calls sent to the FPGA.

4.1.4 Endpoint Addressing

In virtually all radio systems, a method of System.Board.Node:Port is consistent with the address model used in sockets, but supports multiple disparate types of processor and transport mechanisms.  

Still working on

There needs to be a 3 tier model

Hardware mapping – what ports connect to each other (what is allowed)

Transport to transport

Software mapping – board.port to string name

Transport /component (or visa versa dependant on push model) to name

Connections – actual linkage ( probably can get away with the SAD file)


Name to Name

Might need 


Logical Device to transport


Node to type of node

There shall be a System Definition Descriptor specified in XML, that defines a descriptive string-based topology for the system.  

4.1.5 IAL (FPGA) Transport Layer API

In the previous section, a standard interface that abstracts physical transports into and out of a FPGA device were defined.  This section will define a standard “Transport Layer API” to attach multiple components together within a single FPGA. 

The SCA defines two interface types: a “provides” port which provides a service, and a “uses” port, which uses that service. This concept will extended inside the FPGA to the component level – a component is provided data from the transport using its provides port, and “uses” the transport to provide data to another component.  This is difficult to understand in an FPGA context, so we will use the term source and sink to define these terms within this document. 

“Source” interfaces are used to pass data from the transport layer to the waveform component, and from the waveform component to the transport layer. 

“Sink” interfaces accept data driven to the waveform component from the transport layer, and data driven to the transport layer from a waveform component. 

The connection layer between these components will expect these components to provide or accept data over a common interface.  On the FPGA this interface will take the form of signals.  

The following signals are outputs of the source interface, and inputs of the sink interface:

· clock – all signaling on this interface is synchronous to this clock  
· data – this bus is used to carry payload data. Data bus width will be defined later

· port –this bus defines the logical channel number associated with a data transfer
· length – this bus defines the length in words of the data buffer to be transferred. A size of MAXBUFFERSIZE indicates that data is to be constantly streamed.
· write – asserted to transfer data on the data field
· socketRequest – this MAXSOURCESOCKETS-wide vector indicates that a specific source transport interface is requesting access to the sink transport
The following signals are inputs of the source interface, and outputs of the sink interface.

socketReady – this MAXSINKSOCKETS-wide vector contains a flow control signal from each sink interface accepting data from the source interface.
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 Figure 4 Interface Definition

Note that it is assumed in this model that bus operations shall be supported through tri-state logic. It is further assumed that the act of connecting signals from one component to another shall be implemented by the platform vendor.  It is permissible and expected that all unused signals shall be optimized out during synthesis.

Flow Control

During a standard data transfer, the source port shall send a socketRequest signal to gain access to the sink port.  When the sink interface is ready, the sink interface shall assert a socketReady signal.  The source interface then shall assert a write signal, and on the next clock edge, the first data word, port number, and buffer length are transferred to the sink transport, and the length is decremented.  On subsequent clock edges, additional data words shall be transmitted, and the length is decremented, until all data words are transferred.  Write, socketRequest, and socketReady shall be de-asserted following the transfer of the last data word in the buffer.  

The sink port shall de-assert socketReady at any time to interrupt the data transfer. This could be done to service a socketRequest from a higher priority source port, or to maintain flow control accounting for discrepancies in the data bus width.

Overall, this scheme assumes that the sink port is extracting data from the source port at a rate greater than or equal to the rate at which the provides port is getting data. For those cases where the arbitration overhead is unacceptable, the length can be set to MAXBUFFERSIZE indicating that data is to be constantly streamed, without arbitration.  Note that arbitration will need to occur and be implementation dependant on fan-in type interfaces.

Data bus width

Sink and source interfaces shall be defined by the radio platform or component creator, as appropriate to the transport interface. Only the bus sizes defined in the CORBA IDL specification shall be supported (1, 8, 16, 32, 64 bits).  

Translation between disparate data bus types shall be accommodated through translation components, which will map the word sizes, pack or unpack data, and change endian-ness, as appropriate. The translation components shall be provided by the radio platform provider for use by the waveform developer.
Waveform Components

The figure below shows a typical waveform component architecture.  A waveform component shall contain a minimum of one sink and one source transport interface.  Other waveform components with more complex data or control requirements may instantiate further transport interfaces as required.
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4.1.6 SHS Component Instantiation

NOTE THAT THIS IS ONLY A POTENTIAL WAY OF DOING THINGS.  STILL IN DEVELOPMENT.
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Figure 5 Implementation Example

The proposed process for instantiating the components on this system would be as follows:

A) Allocating capacity on the FPGA Logical Device for the FPGA based Component by calling allocateCapacity. The FPGA Logical Device will allocate the FPGA and capacities for a software proxy for the FPGA image that will run on the local GPP. 

B) Allocating capacity on the DSP Logical Device for the DSP based Component by calling allocateCapacity. The DSP Logical Device will allocate the DSP and capacities for a software proxy for the DSP image that will run on the local GPP. 

C) Executing the FPGA Component on the FPGA Logical Device. The FPGA Logical Device will instantiate the software components that will act as the proxies for the C1 and T1 images and load the FPGA image onto the FPGA, using the appropriate IAL calls or other platform specific communications.  

The following IAL commands would then be called to finish the initial setup:

1) 
Open C1 resource
2) 
Open T1 resource - location obtained from resource list associated with FPGA
3) 
Bind C1 to T1 - This sets the logical channel number in C1 that the data to T1 would be routed over.  This is based on an xml table detailing component to transport connections.  From a CF::port standpoint we will consider a component/transport pair to represent the CF::port.
 

D) Executing the DSP Component on the DSP Logical Device. The DSP Logical Device will instantiate the software components that will act as the proxies for the C2 and T2 images and load the DSP images onto the DSP, using the appropriate IAL calls or other platform specific communications.  

The following IAL commands would then be called to finish the initial setup on the dsp: 

1) 
Open C2 resource
2) 
Open T2 resource - location obtained from resource list associated with DSP
3) 
Bind T2 to C2 - This sets the logical channel number in T2 that the data to C2 would be routed over 
 

E) Calling getPort on the C2 Component Proxy to get the “provides” port for communications with other application components. (The API this would export may be component specific but at a minimum should include the CF::PropertySet Interface)

F) Calling getPort on the C1 Component Proxy to get the “uses” port for communications with other application components.

G) Calling connectPort on the FPGA Component Proxy to connect its “uses” port to the other application components “provides” port. If the FPGA component needs to send data to another component via an IAL link, the proxy will query the that component for the information required to set this up and then configure the FPGA Image accordingly via IAL.

Bind T1 to T2 - This sets the T1 to T2 routing, if appropriate, and maps the logical channel from C1 through T1 to T2 
H) Read and write C1 to set parameters, etc.
I) Start C1 - this is for flow control starts the data moving from C1 into the transport.
J) C1 starts passing data to the transport, either as a push function (write), or in response to a pull call from C2 (receive), through its "container" which is in reality an IAL interface
 

4.1.7 SHS Component Operation

This section will provide an example that shows how CF components can use the IAL to control FC’s behind the IAL API. 
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In this example, the port connections between the Assembly Controller and the processing resources are used to control the various functions within the DDC and the Demod via the “Logical Software Bus”. For example, the following procedure would be utilized to change the center frequency of the DDC using the established ports following a remote call to the Assembly Controller from the radio’s user interface: 

A) The Assembly Controller calls the change center frequency function of the DDC Resource, passing the new center frequency in the argument of the call.

B) The DDC Resource uses a DDC API call to communicate with the FPGA via the IAL to change the center frequency of the DDC. 

C) The FPGA signals the DDC Resource through the IAL when the change is complete

D) The DDC Resource signals the Assembly Controller that frequency has changed. This could be done as a return on the control call from the Assembly Controller, or as a separate acknowledge call.

Note that the use of this interface doesn’t obviate the ability of other components to provide hard-real time control of the FPGA component, allowing for tight control loops, etc.  In this scheme, if multiple “components” are encapsulated within the FPGA, then multiple proxies could be established for each component, allowing a simple development model for waveform component developers.  IAL calls are utilized to open and bind connections between the FPGA components and other components through the transport mechanisms, as described in the IAL template.  For those connections that are collocated with a direct connection, special steps must be taken to ensure allocation of associated components. 
4.2 Component abstraction

4.2.1 Purpose and Scope

JTRS Waveforms consist of assemblies of functional components. These components can be implemented in software or in specialized hardware such as DSPs, FPGAs, or ASICs. The SCA defines a set of rules so developers can develop software components targeted to GPPs (Genereal Purpose Processors) that adhere to a defined configuration specification to support portability. This SCA section (3.2)  is intended to define requirements waveform components written in languages targeted for DSPs, FPGAs and ASICs, to complement the SCA requirements for GPP components. The requirements set forth in this chapter define rules compatible with the software component rules, thus implying that a GPP software component implementation should be replaceable with a FPGA/ASIC/DSP implementation without changing the assembly description (SAD) or component description (SCD).  This does not imply a CORBA infrastructure for DSPs or FPGA/ASICs.  This also does not imply that any existing SCA-defined software component will be implementable using this extension.  The approach is to reinvent as little as possible relative to the existing specification for GPP components, and to fix only what is broken, for non-GPP components.

Terms and concepts used in this section

For purposes of this discussion definition of a few terms is useful:

· The term container is used to indicate the instance of a given class of processing resource (GPP, DSP, FPGA/ASIC) where instances of waveform components may execute.  In general, multiple components of multiple waveforms may execute concurrently in a container.  

· Components of a waveform executing in the same container are said to be collocated.  

· In the SCA, GPP software components are sometimes called Resources, and their containers’ software proxies are called Executable Devices.  

· The term “platform” is used to indicate the collection of containers and their (physical) interconnections within a JTR set.  

· The term “firmware component” is shorthand for DSP, FGPA or ASIC components — not GPP components.

When a waveform is being moved to a new platform (JTR Set), all components need to be ported.  The original waveform obtained from the JTRS JPO repository will have one or more source code implementations per component depending on the class of container used by previous ports of the waveform (GPP, DSP, FPGA/ASIC).  This assumes that waveforms ported to other platforms are also evaluated and returned to the JTRS JPO repository as another implementation of the waveform.  

This section extends the SCA and provides definition so DSP and FPGA components can be portable to other containers of the same class and defines components such that they are implementable for more than one class.  Additionally, this section provides concepts for doing for FPGA and DSP components what is already done for GPP components, facilitating design and implementation specification and commonality between the component implementer as well as the platform builder (who supplies the containers).

4.2.2 Specialized Hardware Component Interfaces

There are three dominant classes of processing resources (GPP, FPGA/ASIC, and DSP). These classes all require different programming languages and infrastructures to be used effectively. This section addresses “like-for-like” portability when a component implementation written for one class is moved to another platform’s container(s) of the same class.

To facilitate portability, the following interfaces are addressed: 

· The interfaces every component must support (e.g. the Resource interface for SCA GPP components)

· The interfaces used by components to access local services (e.g. POSIX for GPP components)

· The application interfaces used to communicate among components and to logical devices.

4.2.3 Specialized Hardware Component Requirements 

The specialized hardware component requirements identified in this section are analogous to those in SCA for GPP software components, specifying:

1. How components can be described and written, and stating how they may interact with their immediate environment.

2. How containers must support the interfaces and services that component writers are allowed to use.

3. How platforms (a.k.a. JTR sets) containing multiple containers must ensure IDL-defined inter-component communication works in cases where the communicating components are:

· Collocated in any class of container

· Located in different containers of the same class

· Located in different containers of different classes.

Of course a platform only needs to worry about container classes that are in that platform.

These requirements do not preclude DSP containers from implementing a complete CORBA and POSIX AEP environment, suitable for executing components written to the current SCA  software component specification.  In that case such a  DSP container can be used to directly support existing SCA-compliant GPP-style components.  The DSP container is acting like a GPP container to support components written to the GPP requirements.

4.2.4 How Portable Components are Written

The SCA defines requirements for applications (waveforms) by defining OS, CORBA, and Core Framework Services and Application interfaces and general software rules. Analogous requirements are defined here for DSP, FPGA, and ASIC components provided a few considerations are addressed. For example, the interface similarity between DSP components and GPP software components and the similarity between FPGA and ASIC interfaces. DSP and GPP components can be callable with a parameter invocation while FPGA and ASIC components are invoked with less flexible register interfaces. Abstractions of the SCA requirements can be used to specify portable components independent of the implementation details.  Thus, the following sections address: 

· The definition of a component’s interfaces, including both those that are mandatory and those that are component-specific.  Mostly implementation independent. – Definition of component’s external interfaces

· Local Services (generally provided wholly within and by the container, like a GPP RTOS provides the POSIX AEP on a GPP) – Local APIs to be available from a container

· Communication Services (locally provided services for communication with other components and services possibly in other containers, like CORBA middleware does on GPPs) – How to communicate with other components.

· Portability Guidelines with additional rules to follow

4.2.4.1 Defining the component’s interfaces

SCA section 3.2.2 states that each component’s interfaces are described in a Software Component Descriptor (SCD) file (which references an IDL-defined interface).  SCA Appendix D (Domain Profile) section 4.1.2 describes how a Software Package Descriptor (SPD), when describing implementations of an SCA Component, contains a reference to one SCD file and describes multiple implementations of the component which all implement the component as described in the single SCD file.  The SCA limits the SCD and SPD-to-SCD reference to “CORBA-capable” components.  This SCA extension chapter defines how SCDs can also apply to non-CORBA components.  Thus implementing a (non-CORBA) component targeted at a non-GPP container will require IDL and an SCD, as described below.  It is thus possible to create a GPP and non-GPP implementation against the same SCD and IDL, in a package described by a single SPD that contains both implementations.

In the SCA, each component has a core “specific” interface, which inherits from the Resource interface, and may additionally inherit from one or more “supported” interfaces.  This interface is used to initialize, control, and configure the component in a way that is generic; all components are controllable and configurable in the same way using the same Resource interface.  When component designers require more specialized control interfaces beyond what is provided by the Resources interface, those customized interfaces still inherit, and all implementations support, the basic Resource interface.

In addition to the singular “specific” interface, a component can have ports, which allow for intercomponent communication.  Each port is also defined by an interface, either as a “user” (client) of that interface or a “provider” (server) of that interface.  Thus a component’s interfaces consist of its “specific” interface, and its port interfaces.  The specific interface can be thought of as a special port.

The component’s application interface specification (in IDL and SCD) are used to generate appropriate API-specific interface artifacts that act as “gaskets” between component code (port) and container (middleware) analogous to the stubs, skeletons, and interface header files generated by a CORBA IDL compiler.

The key details of this non-CORBA approach for firmware (non-GPP) components are:

· Defining the IDL and component definition (SCD) subset to support across all classes of containers (subset of the existing SCA specification for GPP components)

· Defining the mapping from that definition into the specific languages in an appropriately simple, functional and usable way that captures the variability of interfaces without making such interfaces much more complex than typical inter-component interfaces in the non-GPP domain.

For FPGA/ASIC interfaces, the Open Core Protocol (OCP) provides the basis for interface definition since it provides both bus/technology/language independence as well as a richness that is optional and is easily “compiled out” when not used by either side of a communication.  It can be used in VHDL, Verilog, SystemC, etc.  It is open and does not require implementation license fees.  OCP by itself is not sufficient, but some modest messaging semantics overlaid on OCP result in an appropriate solution.  See the section XXX below for how the component interface definition maps to a set of OCP-defined interfaces.  Thus the IDL-defined interfaces map to OCP-defined interfaces and message formats.

The C-based DSP interfaces are derived from this FPGA/ASIC-centered approach since this keeps it minimal and does not introduce too much diversity in the profiles for these two classes of processing containers.  Although some argue that DSPs are becoming more powerful and capable and may someday support full CORBA environments, this transition only applies to some DSPs.  Thus the DSP profile defined here does not try to “interpolate” in using parts of CORBA, but keeps the model as simple and similar to FPGAs as possible.  Of course DSP enviroments that fully implement CORBA and the POSIX AEP can house components written to the GPP specification.

The IDL-defined interfaces map to C-based ports (see section XXX below), as well as C-based message strutures.

The local control interface for firmware components is discussed in general (for both FPGAs and DSPs) in the “Execution Model” section below.

IDL constraints

IDL specifies interfaces consisting of operations with arguments and exceptions.  The “client side” of an operation issues requests (carrying input arguments) and the “server side” of an operation receives requests and issues responses (carrying output arguments and return values or error/exception information).  IDL provides for operations to be oneway (request only) or two-way (requests elicit responses with outputs or errors).

IDL implies that messages are sent from client to server for requests, and (for two way operations) messages are sent from server to client for responses.  One precise way these messages can be formatted and exchanged is specified in the GIOP message level protocol (General Inter-ORB Protocol).  Containers must exchange messages somehow to convey requests and responses.  This SCA extension does not mandate any such format, but only mandates that the containers in a platform deliver and accept messages according to the local communication interfaces defined for that class of container.  No such mandate is required to accomplish portability of non-GPP components.

IDL has a rich set of features and data types that make its wholesale adoption for defining interfaces for firmware components and containers inappropriate. Thus this extension defines a subset that, while being appropriate and efficiently implementable for firmware, is still fully compatible and usable for GPP containers using CORBA.  The most significant areas of subsetting are with respect to data types for arguments and return values.  The key subset is defined by removing the following features from IDL:

· Value types

· Contexts

· Component related features since the SCA does not support CORBA components

· String, Wide char or wide string types

· Long double types (greater than 64 bit floating point)

· Any, or TypeCode

· Native types

This subsetting essentially leaves messages consisting of scalar, structure, fixed array, variable array types, of 8, 16, 32 and 64 bit integers or 32 or 64 bi floating point, or fixed point values.  It does support two-way operations.

The component features of IDL are not supported by SCA because he SCA was defined before the CORBA component standard (CCM) was set (and given an embedded profile).

SCD Constraints and control delegation issues

The SCD defines the set of ports of the component, and the interfaces defined for each port.  There is a “special port”, which is defined to support a set of interfaces all inherited into a single “specific interface of the component”.  This set must include the SCA Resource interface, which defines the “management” interface to the component.

The port interfaces shall be required to use the IDL subset.

For firmware components, it is expected that there is a proxy component running in the GPP environment that manages the firmware component.  This is configured by simply having the implementation element of the softpkg (SPD), which is referenced directly by the assembly (SAD), contain a dependency on the firmware component in a subsidiary SPD.

Thus for firmware components we need to define two fixed subsidiary control/configuration/management interfaces.  One is for the proxy to use, to control the component (and in fact provided by the container, per component), and a different one is for the component itself, to provide to its local container.  This structure is analogous to the way CCM works (for those who know about it).  We will call the container-provided per-component interface the external control interface and the component-provided interface the internal control interface.  The implementer of the component is only concerned with the latter, but the container must support the former.

Thus, the proxy implements the specific interface, which inherits the SCA standard Resource interface.  The proxy represents the component to the CF and the Assembly Controller component of the waveform.  The proxy uses the external control interface to talk to the container about a specific component executing on that container.  The container implements the external interface by either delegating operations directly to the component via the internal interface, or, for some operations, directly configuring the component (e.g. connecting its ports).  The component implements the internal interface.

The external control interface is a subset of the Resource interface, and the internal control interface is a subset of the external interface.  For example, the Lifecycle and PortSupplier aspects of the Resource interface are handled by the container, whereas the PropertySet and Test aspects are handled by the component itself.

More details of these two subsidiary interfaces (rough behavioral subsets of Resource) will be defined in the next version of this document.  This will clarify the responsibilities of the container to start/stop/port-connect its components.

4.2.4.2 Local services provided by the container that may be used by the component

In addition to implementing its specific interface, and utilizing its port interfaces to communicate with other components, a component can use a standard set of services provided by its container.  For GPP components, this set of services is defined as a POSIX subset (AEP), along with a few CORBA services (name, log, event).

For non-GPP containers, the container-provided local services are more limited and will be defined below.

The SCA currently defines an Application Environment Profile (AEP), which specifies the local services as a POSIX profile defined in SCA Appendix B.  For DSPs, this is a (much) simpler subset of the AEP.  Starting with the existing AEP definition in Appendix B, the following services are removed for DSPs:

· File, device, asynchronous I/O

· Signal

· Memory locking

· Message passing

· Threads

This basically leaves:

· The typical ANSI-C runtime library (without I/O) – most DSPs have this available anyway.

· Semaphores/Mutexes

· Timers

· Signals (small subset).

Since the container is responsible for communication, individual components do not typically need access to other communication services.  Threading (in DSPs) can generally be supplied by the container, and not require the component writer to create or manage threads.  This is similar in concept to the way Real-time CORBA manages threads without having application code worry about threads except to use mutexes around critical sections.  RT CORBA specifically provides the appropriate simple mutexes in this context.

For more context on this AEP definition, see the section entitled “Execution Model for Firmware Components” below.

For FPGA/ASIC environments, the list of “local system services” is short:

· Reset services

· Clock services

· Local memory resources (low latency/SRAM and large/DRAM types)

· Access to component-specific hardware (when the job of a component is to act as a device driver for a specific piece of FPGA-attached hardware, e.g. an antenna control interface).

4.2.5 How Containers Support Portable Components

Platform suppliers must provide operating environments in the containers of the platform that support the three types of interfaces defined above for the class of each container.  These are roughly the same interfaces that component writers implement with, but typically from the API “provider” perspective rather than the API “user” perspective.

The container shall use the component’s specific interface to initialize, control and configure the component.  It shall support the component’s port interfaces to provide communication with other components, whether collocated in the same container, or located in another container in the platform.  The container shall provide and implement the local services defined above that the component author may use.

4.2.5.1 Execution Model of Firmware Components in Containers

How a container executes a component in a GPP container is defined by the fact that inbound CORBA requests to provider ports of the component are dispatched in the context of a thread of execution provided by the ORB.  A component can also create its own threads, since it has access to the pthread API in the POSIX AEP.  Thus operations performed on the uses ports may be executed either in the context of an ORB-provided thread or a component-created thread.

Firmware components must have a simpler execution model that is appropriately simple to their leaner, more constrained environments.  The following execution model description is based on a proven set of tradeoffs that keeps components simple, and allows containers great flexibility in providing for component execution.  This flexibility allows maximum use of existing or legacy infrastructure.  The term “worker” is used as short hand for the component implementation instance in this model.  The model is the same for DSP and FPGA/ASIC workers, although there differences in the details.

· Execution threads are supplied outside the worker so there is no need or use in the worker dealing with threads. (Mostly a DSP issue)
Why: reduces complexity of component code, eliminates requirement to support a thread capability
Why: allows container to decide whether multithreading is even needed - frequently not.

· Two-way user or provider interface ports (for request/response, two-way operations) map into a pair of worker ports: one for input (requests), one for output (responses).
Why: simplifies how two-way operations are supported, lets workers simply produce one message (response) corresponding to a request, keeping container simple and unaware of request and response matching
Why: enables maximum concurrency in FPGA/ASIC workers [at the cost of extra port signals which may be an issue for FPGAs: look into making this optional by allowing the implementation to express a preference]

· Execution is enabled when some combination of ports are "ready".
For FPGAs, a “run” signal.   For DSPs, a “run” entry point.
Worker execution is a series of “runs” initiated by container logic.
Why: simplify component code, eliminate any "wait for next thing" logic or loop
Why: make run decisions centralized in the container, fast and simple and small

· Worker declares a "port ready mask" or "run condition" as a simple "or" of a small number of masks.  Default is one mask of all ones, meaning "run me if all my ports are "ready".
If a port being ready is not required, worker can still test its readiness.  Otherwise it can assume the readiness of ports in its run condition.
Why: simplest model for specifying when to run components with multiple ports; common cases are trivial.

· An input port is ready when there is a frame/buffer/message for the worker to look at.

· An output port is ready when an output buffer can be filled/written by the worker.

· In one "execution" (run), the component indicates which ports have been "advanced".
Why: simple way to do simple things: execution processes all inputs to produce all outputs.

· Advancing an input means the frame/buffer/message has been consumed (buffer can be released).

· Advancing an output means the frame/message in the current buffer is ready to go, with length. It can be sent towards its destination.

· Worker always has access to current buffers on all ports, including command and length.
“Command” is operation ordinal in IDL interface for requests.
“Command” is error indicator (or zero) for responses (exception ordinal)

· Multi-buffering, circular buffering, or FIFO buffering, is transparent to worker code and can be configured in container, possibly based on QoS or rate matching.
Why: delegate buffer management approach to container, no mandates.

· Advancing input buffers independent of releasing them is possible. (advanced feature, maybe not necessary).  This would allow the worker to ask for more input data wihle maintaining access to recent input data.

· Advancing output buffers independent of releasing them if possible. (advanced feature, maybe not necessary).

· In addition to the “run” entry point, each worker has an “initialization” entry point as well as a “release” entry point.

· The initialization entry point has access to the initial configuration information.

· The single, “specific” control interface (based on the SCA Resource interface) acts as another port, but some of the operations on some of the interfaces are handled by the container and not seen by the worker.

4.2.5.2 General model of container-to-component interaction

The execution model above requires the container to assess which workers have run conditions that are satisfied, and enable their execution.  In an FPGA, workers can run concurrently.  In a (single core) DSP, workers must be run sequentially.  In DSPs, the container may decide to run workers inside different threads (using priorities or time slicing) but may also run workers in a single thread.

When workers indicate the consumption of frames on input ports, the container can recycle the buffer.  When workers indicate the filling of frames on output ports, the container can start the transmission of that buffer/message on to its destination.  When two workers are collocated, the buffer at an output port may be directly used as a buffer at the downstream workers’ input port.  Workers assumed to not modify their input buffers unless they specify that fact.

Control operations that are not handled completely by the container, are supplied to the worker on a special “provides” port that represents the specific interface of the component as defined by its IDL and SCD.  This extra port is only used when the non-default specific interface is required.

Configuration is done by the container populating a configuration space defined as a set of storage locations implied by the IDL and SCD for the component.  Thus the IDL implies the the structure of configuration values and their relative position made available to the worker.  This means that the generic configuration interface is handled by a combination of the container and the container-specific GPP proxy for the worker.  The result is that the worker simply provides a slave configuration space that is read from or written to (usually by the Assembly Controller component of the waveform).   The slave register offsets, may be overriden as described in the (Harris section).

4.2.5.3 DSP-specific interface and interactions

The “current buffer” is a combination of memory address, command, and length.  When a component is executed (its run conditions are satisfied), it is presented with an array of “port status” structures, where, for each port, there is:

· Readiness indicator

· Address of current buffer

· Length of current buffer

· Command of current buffer

The worker provides to the container, its entry points (initialize, run, release).

The “control data structure” provided to the worker by the containeris its array of port status structures.  The control structure also provides any worker-requested memory resources as well as the data structure containing its configuration properties.

The “run” entry point executes, processes any available inputs and outputs, indicates any ports which have had their available buffers processed, and returns,to wait for the next appropriate execution based on port readiness (or time passing).   When the run condition is met, the container will once again invoke the “run” entry point.

The data structures passed from the container to the worker, on each execution of the “run” method, look like this:

// Types are mixed case, with Worker prefix, no underscore
// Constants are upper case, with WORKER_ prefix
// APIs are lower case, with worker_ prefix

// This structure describes the state of a port
typedef struct {

void *current_buffer;

unsigned long filled;
// Data in buffer

unsigned long length;
// Total storage length

unsigned int operation;
// or exception on response

Boolean ready;


// is buffer usable?
} WorkerPort;
// This structure tells the worker all about itself
typedef struct {

void *static_memory;

// as requested in metadata

void *properties;

// defined config props

WorkerPort ports[1];
} WorkerState;

So, on each execution, the worker sees the status of all I/O ports, and can read from current input buffers, and write to current output buffers.  It must return to get new buffers, after specifying whether buffers are consumed or filled during the execution.

Thus the worker’s own entry points (provided to container) would be defined as:

typedef enum {

WORKER_OK,



// call me again

WORKER_FATAL,


// I’m trashed

WORKER_DONE,


// I’m done

WORKER_ADVANCE


// All ports advanced, OK
} WorkerStatus;
typedef WorkerStatus WorkerMethod(WorkerState*);
// This structure tells the container about the worker
typedef struct {

WorkerMethod *initialize, *run, *release;
} Worker;

The APIs that the worker uses to indicate port I/O to the container during execution are:

extern WorkerStatus // only OK and FATAL

worker_set_run_condition(unsigned short *masks),

worker_consume(unsigned port),

worker_produce(unsigned port);

A simple example of a XYZ worker whose:

· initial run condition was the default (run when all ports are ready),

· initialize and release methods are empty

· one input port (0) with interface XYZIn and one output port (1) XYZOut

· one oneway IDL interface operation OP1 on input (i.e. can ignore “operation”), which is an array of 100 “shorts”.

· one oneway IDL interface operation OP2 on output

· one property, called center_frequency

would have IDL generated structures like this:

typedef struct {
// structure for defined properties

unsigned short center_frequency;
} XYZProperties;
typedef struct {
// structure for message for operation

short shorts[100]
} XYZInputOp1Struct;
typedef struct {
// structure for message for operation

short shorts[100]
} XYZOutputOp2Struct;
typedef enum {

XYZ_INPUT,

XYZ_OUTPUT,
} XYZPorts;

The actual code for the worker would look like this:

// Forward declaration of local, static functions
Static WorkerMethod initialize, run, release;
// Initialize dispatch table provided to container
//  (not shown here)
WorkerDispatch XYZ_dispatch = {initializt, run, release};

// Define initialize method, setting output operation to
// be a constant, since it is the only one.
WorkerStatus initialize(WorkerState *w) {

w->ports[XYZ_OUTPUT].operation = XYZInputOp1;

return WORKER_OK;
}
// Define release method to do nothing
WorkerStatus release(WorkerState *w) { return WORKER_OK; }
// Define run method to run the “compute” function,
//  reading from input buffer, writing to output,
//  applying current value of the “center frequency”
//  property.
WorkerStatus run(WorkerState *w) {

MyProperties *p = w->properties;

XYZInOp1Struct *in =


&w->ports[XYZ_INPUT].current_buffer;

XYZOutOp2Struct *out =


&w->ports[XYZ_OUTPUT].current_buffer;


compute(in->shorts,


   out->shorts,


   p->center_frequency);

return WORKER_ADVANCE; // consume and produce ports
};
A simple non-preemptive container implementation would simply have a loop, testing run conditions, and calling run methods.  A more complex environment might run workers in different threads for purposes of time preemption, prioritization, etc.  This model allows a variety of container execution models while keeping the worker model simple.

4.2.5.4 FPGA/ASIC-specific interface and interactions

The standard control and configuration port

Similar to DSPs, the worker receives a run indication, performs work, indicates progress at its ports, and stops (if the run indication is false).  The standard control interface to the worker simply enables execution and receives indications of port progress, along with the indication of “OK”, “DONE” or “FATAL”.  The “run condition” management is of lesser value in DSPs than in an FPGA (since workers cannot run concurrently), but the logic still holds.  Thus the standard control interface is an OCP port where the container is master and the worker is slave.

The transactions are “initialize”, “run”, “release”, and “configure”.  All but “configure” are read transactions which return the port status (whether the port was advanced), the return status (OK, DONE, FATAL) and new run condition (ordinal).  The “configure” is used to read or write new configuration property values.  The OCP address space width is 2, to accommodate the 4 commands (init, run, release, config).  The address width is dependent on the size of the property values.  f the worker can accept configuration values concurrent with execution, it can support a configuration OCP thread as well as an execution OCP thread, so that configuration commands (to read and write configuration values) can be accessed during execution.

Any customized aspects to the component’s specific interface are simply represented as another provider port, to enable any allowed interface to be used as an extension to the specific interface.

Port interfaces

Port interfaces are based on OCP masters (for the worker), to allow workers to read and write buffered data.Command and length information (of the current buffer) are supplied by OCP control signals (for provider ports) or OCP status signals (for user ports).  Port readiness is indicated by an OCP status signal.

Metadata in the implementation’s properties allows for workers to request FIFO-style interfaces to ports to further simplify workers that have no need to address data within frames at some of its ports.  This means that the worker author can state which of several styles of OCP-defined interfaces it requires for its ports.  Thus, for a given worker port, the container must provide several types of “gaskets” between the worker’s ports and the containers communication infrastructure.  The container supplier can decide whether these gaskets all normalize to some single container-provided port interface, or to provide a more optimized mapping from the different port styles to the container’s own private communication infrastructure.

Local memory resources are supplied to workers via an OCP master interface to the required and supplied memory.  Thus the worker’s implementation-specific properties will specify the need for local memory access ports (OCP-based), to access the memory resources defined in the standard allocation properties of the implementation.

A specific SCA property name will be defined to specify implementation port requirements, which will indicate requirements for IDL-defined ports, for the custom control port (for the specific interface), and for memory ports.

Local clock and reset resources, separate from the clock interfaces implied by the OCP interfaces are TBD.

The current frame buffer for a port is at address zero of the OCP port when that port is specified as a memory-address port style rather than a FIFO port style.

4.2.6 How platforms ensure component interoperability

The SCA defines the interactions between components to be IDL-based, but in the case of non-GPP containers, the interactions should not necessarily be CORBA-based.  In the GPP environment, a CORBA IDL compiler is used to read IDL and generate CORBA interface artifacts (called “stubs” for the client/user and “skeletons” for the server/provider).  These artifacts are what the component code actually calls (on the client/user side) and what calls the component (on the server/provider side).  These artifacts collaborate with the local CORBA library (called an ORB, in the GPP container) to encode, send, receive, and decode messages between GPP components.  They are specific to the implemenation of CORBA (the ORB), and not considered portable code in any sense.

Most such ORBs have a special optimization to notice when the client and server are collocated and thus remove the “encode, send, receive, decode” overhead and use a local functional call instead.  CORBA IDL compilers that generate these stubs do not have access to the configuration of components that are being executed together in a container.  Thus, the generated artifacts must be prepared for non-collocated as well as collocated cases, even when the configuration may never need it.

The platform must allow IDL-defined messages (a.k.a. requests/replies, invocations, etc.) to flow between components in different classes of containers.  While this requires that the container implementations in the platform know how to talk to each other, it does not imply that these mechanisms (middleware or hardware machinery) need to be standardized.  The SCA requires that CORBA be used within and between GPP containers, but does not specify any communication machinery or hardware or ORB or transport API.  This extension only requires that the various containers in a platform know how to convey messages between portable components that are written to use portable APIs.  No further mandatory mechanisms are needed to achieve portability.  This is shown in the diagram below, where the black arrows represent the logical communication between components, the orange arrows shows where the components actually communicate with their containers via specific interfaces, and the blue arrows show how containers in the platform communicate with each other to effect the intercomponent communication.  The blue arrows are NOT relevant to component portability, but represent the required communication inside the platform. [Diagram is from PowerPoint, needs to be made more appropriate for doc]

.
There are four cases of inter-container interoperability that must be supported;

· Port is for DSP/FPGA component port, "other side" is GPP/CORBA component port.

· Port is for GPP/CORBA component port, "other side" is DSP/FPGA component port.

· Port is for DSP/FPGA component port, "other side" is same type of device component port.

· Port is for DSP/FPGA component port, "other side" is different type of DSP/FPGA comp port.

Within a container (collocated case), the container is simply responsible for providing local inter-worker interoperability.  Similarly, between two containers of the same type, connected by some hardware connectivity, the messages/frames flowing between the ports of workers in different containers is entirely managed by the implementer of that type of container.

When the inter-container communication flows between different types of firmware containers, the message/frame formats should be made compatible between those container implementations for maximum performance and minimum overhead.  The platform implementer has control over all container implementations in the platform, so this uniformity is easily achieved [see the Boeing/Rockwell cluster 1 documents as an example].

When messages are flowing between GPP components and firmware components, then they are flowing between a CORBA environment (via the stubs and skeletons provided by the ORB), to the firmware container, where they are sent/received at the DSP or FPGA worker’s port.

While the message format in a buffer visible to the workers is defined in this section (the mapping of the subset-IDL interface operation to a simple data structure), the format at the CORBA side is not defined anywhere in the SCA (and does not have to be).  The standard CORBA-defined message formats (in the GIOP and CDR specifications) only applies to interoperation between CORBA implementations, and thus does not apply in this case.

The requirement is that the message formats defined for worker ports interoperate with the generated stubs and skeletons of the GPP components.  There is a variety of techniques to accomplish this interoperability, but it is out of the scope for this specification.

4.2.7 Consequences

Consequences of these requirements are a mix of constraints analogous to those already defined in the SCA:

· Component authors must live with the interfaces and services specified.

· Container implementers must supply all the required services

· Platform implementers must use container implementations that can interoperate.

While these constraints have been embraced and excepted (with some gripes) for software components written to the CORBA and POSIX based GPP container environment, getting DSP and FPGA developers to be similarly constrained will be uncomfortable since those environments do not have the same history of open standards and portability.

This extension causes the portability of non-GPP component implementations to be significantly enhanced.  As always, deployed waveform components for real platforms can have specially optimized non-portable component implementations that exploit specific features unique to the containers.  However, having a portable implementation appropriate to the class of container (DSP, FPGA/ASIC) will provide a good starting point and reference implementation to significantly reduce porting effort and cost.

The key details of this approach are:

· Defining the IDL and component definition subset to support across all classes of containers

· Defining the mapping into the specific languages in an appropriately simple, functional and usable way that captures the variability of interfaces without making such interfaces much more complex than typical inter-component interfaces in the domain.

· Identifying the appropriate set of local services to offer to component developers.

All three of these decisions are tradeoffs.  All have precedents.  Portability is rarely 100%, but moderately ambitious portability goals should be obtainable.

For FPGA/ASIC interfaces, the Open Core Protocol (OCP) provides a good basis for interface definition since it provides both bus/technology/language independence as well as a richness that is optional and is easily “compiled out” when not used by either side of a communication.  It can be used in VHDL, Verilog, SystemC, etc.  It is open and does not require implementation license fees.  OCP by itself is not sufficient, but some modest messaging semantics overlaid on OCP should result in an appropriate solution.

It may be useful to derive the C-based DSP interfaces from this FPGA/ASIC-centered approach since this will keep it minimal and not introduce too much diversity in the profiles for these two classes of processing containers.  Although some argue that DSPs are becoming more powerful and capable and may someday support full CORBA environments, this transition only applies to some DSPs.  Thus the DSP profile defined here does not try to “interpolate” in using parts of CORBA, but keeps the model as simple and similar to FPGAs as possible.

4.3 SCA Profile Extenstions for Control of FPGAs

4.3.1 Purpose and Scope

This description addresses the definition and interface to FPGA devices within an SCA-compliant radio system for the purposes of configuration and control of a waveform application within one or more FPGAs in a radio system.

4.3.2 Interfaces

The essential concept is to simplify the mechanism for interfacing to and controlling FPGA applications through the registers defined in the FPGA load.  Applications wishing to configure or query (set or get) the register simply access a defined SCA property.  Thus, the SCA property mechanism provides the interface specification for the FPGA implementation.

<UML to be provided>

4.3.3 Requirements

Since control of an FPGA is performed through reading and writing to registers defined in the HDL code loaded into the FPGA, the requirements that need to be incorporated into the SCA are relatively simple and straightforward.  Suggested modifications include:

1. Add a Section 11 to Appendix D to describe the Document Type Definition (DTD) for mapping SCA properties to FPGA registers and/or Board Support Package (BSP) functions.

2. Modify Section D.2.1.1 of Appendix D to reference the FPGA mapping XML file as part of the properties file reference for the Software Package Descriptor (SPD) for the software implementation for a specific waveform, as referenced within the Software Assembly Descriptor (SAD).

4.3.4 FPGA Register Map DTD

The following is the Document Type Definition (DTD) file for the FPGA register map XML file.

4.3.5 Examples

The following subsections provide a simple example of the implementation of the approach described above.  First, the SCA property is defined, using standard SCA property XML that provides the external application interface into the FPGA.  In the second XML file, the SCA property is mapped through to the underlying FPGA via the FPGA register map XML file.

Additionally, the register map file defines a second FPGA register that is not exposed through the SCA properties XML.  Thus, it also provides a means to define register access for internal application access that is not exposed to general SCA applications.

SCA Properties XML File

The following SCA properties XML file defines a simple example 

<?xml version="1.0" standalone="no"?>

<!DOCTYPE properties SYSTEM "properties.2.2.dtd">

<properties>

<simple
id="ScratchpadRegister1"

type="long

name="ScratchpadRegister1"

mode="readwrite">

<description>

Scratchpad Register 1 (CNTL_REG_0)

</description>

<kind kindtype="configure"/>

</simple>

</properties>
FPGA Register Map XML File

The FPGA Register Map XML file provides the information necessary to map between the simple property interface definitions provided in the SCA properties XML file and the FPGA registers defined in the HDL implementation that is loaded into the FPGAs.  

In the example below, a mapping is provided for the ScratchpadRegister1 SCA property defined above.  An additional FPGA register mapping, LoopEnableControlRegister_SLFEnableLoop, is also defined below but is not defined above in the SCA properties XML file.  This is intentional and allows the definition of low-level registers that are necessary for the control interface but are not required to be or should not be exposed to the external SCA applications.  Thus, it allows the definition of private registers or properties for internal use in a consistent manner.

<?xml version="1.0" standalone="no"?>

<!DOCTYPE fpgaregisters SYSTEM "fpgaregisters.dtd">

<fpgaregisters id="PMCDLRegisterMap">

<description>

Harris Programmable Modem CDL FPGA Register Map

</description>

<item

id="ScratchpadRegister1"

block="6" register="0"

startbit="31"

stopbit="0"

type="long"

access="readwrite">

<description>

Scratchpad Register 1 (CNTL_REG_0)

</description>

</item>

<item

id="LoopEnableControlRegister_SLFEnableLoop"

block="1"

register="0x200003"

startbit="5"

stopbit="5"

type="boolean"

access="readwrite">

<description>

Loop Enable Control Register - SLF Enable Loop (CNTL_REG_33)

</description>

</item>

</fpgaregisters>
5 Common Functions and Deployment Enhancement

5.1 OS Service APIs for Digital Signal Processing environment

5.1.1 Purpose and Scope

This section defines common Operating System (OS) Services, based upon a POSIX AEP subset extracted from the SCA POSIX AEP. These common services will be implemented across all SCA Digital Signal Processing (DSP) implementations. There is an obvious tradeoff between the robustness of the set of chosen APIs and the complexity required to provide an implementation for those APIs in the DSP environment

The approach taken to to establish a composite list of implementable OS APIs for the DSP environment is:

1. Identify high-priority services based upon their operational benefit

2. Consider those additional services related to the SCA POSIX AEP profile

3. Filter for redundancies and for availability in common DSP libraries.

Motivation

DSP environments vary in supported OS APIs and overall service capabilities. There presently exists no common API set, ala the GPP’s POSIX AEP subset, that establishes a common supported interface for all components within the DSP environment. The logical selection of the POSIX AEP APIs as a starting point, and the subsequent mapping of that API set to a baseline set of commonly existing DSP OS APIs establishes a fundamental set of DSP OS services that are realistic to implement as part of a real-time signal processing environment. Note, that from a functionality perspective, we do currently recommend specifying only what is commonly provided as part of many contemporary DSP OSes  - as the implementation and porting of functionality beyond such common functions would likely entail a substantial software development effort (e.g. File Services are not presently part of most DSP OS’s, so mandating an implementation of DSP File Services could impose a great burden on platform developers).


5.1.2 OS Service APIs for DSP Environment Requirements

Initially identified as high priority services are:

· C-Runtime Library Support

· A simple hardware interrupt structure

· Simple message passing (POSIX.1b- Message Passing)

· Multi-threaded support == (POSIX.1c Threads)
· Software timers == (POSIX.1b-Timers)

· Simple high speed data input / output (POSIX.1b-Asychronous I/O)
Thus, the following high priority services shall be provided by DSP Common OS Services:

· C-Runtime Library Support

· A simple hardware interrupt structure

(Note that this represents a preliminary list that is subject to review, comment, and revision prior to community approval.)

In addition, the following POSIX AEP profiles shall be provided by the DSP Common OS Services:

Device I/O Function Behavior.

The Device I/O APIs are intended for use by Services and Devices. It is not presently anticipated that these APIs will be directly used by Application components
	Function
	Description

	open
	Opens a device

	close
	Closes a device


Table 1.  POSIX_DEVICE_IO Functions

	Source
	Service

	POSIX.1b
	{_POSIX_ASYNCHRONOUS_IO}

	POSIX.1b
	{_POSIX_MESSAGE_PASSING}

	POSIX.1b
	{_POSIX_REALTIME_SIGNALS}

	POSIX.1b
	{_POSIX_SEMAPHORES}

	POSIX.1b
	{_POSIX_TIMERS}

	POSIX.1c
	{_POSIX_THREADS}

	POSIX.1c
	{_POSIX_THREAD_PRIORITY_SCHEDULING}


Table 2.  POSIX.1b and POSIX.1c Option Requirements

	Function
	Description

	aio_read
	Asynchronous read

	aio_write
	Asynchronous write

	mq_close
	Closes a message queue

	mq_getattr
	Retrieves the attributes of a message queue

	mq_notify
	Requests that a process be notified when a message is available on a queue

	mq_open
	Opens a message queue

	mq_receive
	Receives a message from a queue

	mq_send
	Sends a message to a queue

	mq_setattr
	Sets the attributes of a message queue

	mq_unlink
	Removes a message queue

	sigemptyset
	Empties the signal set.

	sigaddset
	Adds the signal to a set.

	sigdelset
	Indicates that a particular signal is no longer a part of its signal set.

	sigismember
	Determines if a signal is a member of a signal set.

	sigpending
	States the signals that are blocked and the signals that are pending.

	sigwaitinfo
	Waits for a signal and return signal with additional information, if applicable to the given signal.

	sigtimedwait
	Wais for a signal to be received and if none are received timeout after a specified interval.

	sigwait
	Equivalent to sigwaitinfo except additional info not returned in the call.

	sem_destroy
	Destroys an unnamed semaphore, sem_init must be called again before using the semaphore

	sem_getvalue
	Gets the value of a specified semaphore

	sem_init
	Initializes an unnamed semaphore

	sem_open
	Opens/creates a named semaphore for use by a process

	sem_post
	Unlocks a locked semaphore

	sem_trywait
	Performs a semaphore lock on a semaphore only if it can lock the semaphore without waiting for another process to unlock it

	sem_wait
	Performs a semaphore lock on a semaphore

	clock_gettime
	Returns the current value for the specified clock.

	difftime
	Computes the difference between two calendar times (time1-time0) and returns the difference expressed in seconds

	gmtime
	Converts a time value to a broken-down UTC time 

	localtime
	Converts a time in seconds since the Epoch into time units

	mktime
	Converts a time into a calendar time

	timer_create
	Returns a unique timer ID used in subsequent calls to identify a timer based on the systemwide clock

	timer_delete
	Removes a previously allocated, specified timer

	timer_getoverrun
	Returns the timer expiration overrun count for the specified timer

	timer_gettime
	Returns the amount of time before the specified timer is due to expire and the repetition value

	timer_settime
	Sets the value of the specified timer either to an offset from the current clock setting or to an absolute value


	Function
	Description

	pthread_sigmask
	Examine or change (or both) the calling thread's signal mask, regardless of the number of threads in the process.

	pthread_kill
	Send a signal to a given thread.  

	pthread_create
	Create a thread


5.2 Antenna Subsystem APIs

5.2.1 Purpose and Scope

This proposal defines a set of Antenna Subsystem APIs that support real time antenna control and status reporting.  2 GHz and above radios commonly use such antenna types needing this control and status reporting: directional, phased array, and smart antennas.  These API’s accommodate the characteristics associated with various antenna types used for radio systems used in airborne, maritime, ground-mobile, and ground-fixed applications.

5.2.2 Interfaces

The OMG Software Radio Submission SBC/04-04-01 provides the basis for developing standardized real time antenna control/status reporting API’s.  The following SBC/04-04-01 sections relate to the antenna subsystem:

· Communication Equipment (8.2) – Identifies the antenna as an I/O device (see Table 8-7 below).

· Antenna (8.2.6.4.1) – Identifies a set of attributes associated with the antenna I/O device (see Figure 8-27 below).

· Physical Layer Facilities (9.5) – Section 9.5.2, Control, provides details related to the provided physical layer functions.

SCA-Compliant Antennas shall present an interface consistent with the UML in Figure 8-27’

[image: image8.png]
Figure 8-27 – Antenna Definition (from SBC/04-04-01) 
Examples of real-time control and status reporting interface functions for “smart”antenna subsystems in existing radio systems include:

· Antenna pointing commands to the antenna subsystem.  Alternatives include antenna positioning commands (each axis) or directional pointing command of a phased array antenna embedded beam steering processor.  Timing latency and jitter interface requirements depend on the vehicular dynamics of the radio set platform and the link far-end platform.

· Antenna subsystem status data necessary for antenna control.  This is dependent on antenna type and could be rate sensor or synchro position feedback, for example.

· Antenna subsystem status data from “smart” antennas, e.g., that employ adaptive nulling processing in the antenna subsystem

· Provision for simultaneous operation with multiple antennas and multiple waveforms

· Provision for dynamic switching of the active transmit and/or receive antenna while maintaining communications

These functions are more common in radios above 2 GHz that use antennas with substantial directivity.  The following diagram extends the Antenna Definition above and directly addresses the real-time control and status reporting interface functions when dealing with directional, smart, and phased array antennas:

SCA-Compliant “smart”antenna subsystems shall present an interface consistent with the UML in Figure 5-1’
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Figure 5‑1 Antenna Command and Control UML diagram
Implementations building the antenna constructs would implement the pieces needed to fulfill the specific platform and waveform requirements.  Additional interface information (such as antennaOrientation for omni antennas) not needed for the platform or waveform do not have to instantiate the aggregated class-types.  Waveforms would handle such instantiation through the XML profile for the specific platform antenna.

Consequences

Extension of standardized antenna APIs will foster software portability, deployment, reuse of antenna subsystems in some applications, and modular upgrade of antenna subsystem technology.  This standardization facilitates efficient partitioning of the antenna control function implementation, i.e., among GPPs, the signal processing subsystem, and the antenna subsystem in radio systems that require real-time antenna control.  We anticipate this approach will result in modifications (extensions) to the SCA API Supplement.

5.3 Standard Harware Processing Blocks

5.3.1 Purpose and Scope

This section identifies Hardware Processing Blocks (HPB) to be made available on all SCA-compliant Special Hardware Components (e.g., DSPs & FPGA).  The functions provided in these HPBs will be implemented by JTR Set developers. The will not be developed as part of waveform, but will be available for use on each JTR set.

An Executable Specification (see section 3.1.1) shall be generated for each standard processing block. An Executable Specification is an executable model in a higher order language. The test vectors and test results will be made available with the Executable Specification to validate correct implementation on different platforms.

5.3.2 STANDARD MODULATION BLOCKS

In order for electromagnetic waves to propagate through space conventional radio communications must use a radio frequency (RF) carrier. Various blocks, which modulate the carrier to carry the data, have different noise immunity and bandwidth occupancy characteristics. 

SCA-Compliant Special Hardware Components (e.g., DSPs & FPGA) shall provide standard Hardware Processing blocks for these modulation blocks

CCSK
Cyclic Code Shift Keying. 

CPM
Continuous Phase Modulation. Minimum Shift Keying. Multi-h Modulation. 

PSK
Phase Shift Keying. For Non-DAMA UHF SATCOM 181, includes all BPSK and QPSK Modulations. 


BPSK – Binary Phase Shift Keying. 


OQPSK – Offset Quadrature Phase Shift Keying. 

DQPSK – Differentially Encoded QPSK. 


DOQPSK – Differentially Encoded Offset QPSK.

SOQPSK – Shaped Offset QPSK. 


D16PSK – Differentially Encoded 16-ary Phase Shift Keying. 

FSK – Frequency Shift Keying. 


FM – Frequency Modulation. 

ASK – Amplitude Shift Keying. 
Table 2. Standard Modulation Blocks

	Modulation
	FPGA
	DSP

	
	CCSK
	
	WNW LPI

	
	
	LINK-16
	

	
	CPM
	
	UHF SATCOM 181

	
	
	
	WNW BEAM

	
	PSK
	
	UHF SATCOM 181

	
	
	BPSK
	
	UHF SATCOM 183

	
	
	OQPSK
	
	UHF SATCOM 183

	
	
	DQPSK
	
	WNW OFDM

	
	
	DOQPSK
	
	WNW AJ

	
	
	SOQPSK
	
	UHF SATCOM 182 & 183

	
	
	D16PSK
	
	WNW OFDM

	
	FSK
	SINCGARS (CPFSK) All but Analog Voice
	UHF SATCOM 181

	
	FM
	SINCGARS SCPT Analog Voice
	

	
	ASK
	
	HAVEQUICK


Some demodulators provide link quality monitoring metrics and erasure outputs in addition to demodulated receive data. Erasures help enhance decoder performance. 

5.3.3 STANDARD CODING BLOCKS

Forward Error Correction (FEC) coding blocks can be used to improve the noise immunity. Turbo Code and Reed-Solomon block codes may also include Interleaving to improve burst noise immunity. 

SCA-Compliant Special Hardware Components (e.g., DSPs & FPGA) shall provide standard Hardware Processing blocks for these modulation blocks

· Turbo Code 
Iterative Code. 

· RSED

Reed-SolomonEncoder-Decoder Block Code.
· Viterbi

Convolutional Code. 
Table 3. Standard Coding Blocks

	Coding
	FPGA
	DSP

	
	Turbo Code
	WNW BEAM
	

	
	
	
	WNW OFDM

	
	RSED
	
	UHF SATCOM 181

	
	
	
	WNW OFDM

	
	
	
	WNW AJ 

	
	
	
	WNW LPI 

	
	
	LINK-16 RS(32,15) RS(16,7)
	

	
	Viterbi
	
	UHF SATCOM 181, 182, & 183

	
	
	
	WNW AJ


Some decoders provide link quality monitoring metrics in addition to decoded receive data.

5.3.4 USING NEtlists to LINK blocks

VHDL packages should be used to partition VHDL code into reusable blocks. DSP modules coded in C can use .c files for modules and .h include header files for interfaces. Intellectual Property (IP) can provide a library of precompiled object code with header files for each reusable function. 

Given a collection of standard blocks (perhaps each coded as a VHDL package and DSP C module and GPP C++ modules) and non-standard blocks, what is the best way to interconnect the blocks into a working instantiation? The blocks may be within the same processing element or across elements.

Key definitions.

Certain definitions are key to understanding the material in this supplement and they are presented here.  

Platform Independent Model:

XXX.

Platform Specific Model:

XXX. 

Executable Specification:

XXX.

Application Program Interface

An Application Program Interface (API) is a definition and standardization of common interfaces between functional partitions of an SCA application.  An API is defined in terms of IDL and is formed by inheriting Interfaces that were derived from previously defined Building Blocks.
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