Software Communications Ar chitectur e Specification

M SRC-5000SCA
V2.2
November 17, 2001

Prepared for the
Joint Tactical Radio System (JTRS) Joint Program Office

Prepared by the
Modular Software-programmable Radio Consortium
under Contract No. DAAB15-00-3-0001

M SRC-5000SCA
rev. 2.2

Revision Summary

1.0 Formal release for initial validation.

11 Incorporate approved Change Proposals, numbers 97, 99, 110, 160, 161, 162, 164, 171,
177, 178, 179, 180, 193, 195, 201, 204, 205, 208, 209, 211, 216.

2.0 Incorporate approved Change Proposals, numbers 39, 105, 119, 147, 175, 186, 191, 192,
210, 217, 218, 219, 220, 222, 223, 225, 226, 227, 229, 231, 232, 235, 237, 240, 243, 249,
255, 258, 266, 270, 275, 276, 277, 278, 282, 283, 285, 299, 307, 308, 310, 311, 332, 335,
336, 337, 341, 342, 343, 344, 345.

2.1 Incorporate approved Change Proposals, numbers 88, 102, 142, 306, 316, 353, 357, 358,
359, 360, 365, 366, 367, 369, 370, 371, 372, 373, 419, 468, 471, 472, 473, 475, 476, 477

2.2 Incorporate approved Change Proposals, numbers 138, 250, 279, 338, 388, 466, 486, 487,
488, 495, 497, 504, 508, 509, 513, 514, 515, 517

Changes from the previous revision, other than editorial corrections, are marked with change bars
in the margins.

Change Proposals are controlled by the JTRS Change Control Board. CPs incorporated into the
SCA are considered "closed" and can be seen on the JTRS web site at:
www.jtrs.saalt.army.mil/docs/documents/sca_cch.html.

M SRC-5000SCA
rev. 2.2

Table of Contents

FOREWORD VI

1 INTRODUCTION. ...t ss bbb bbbt e bt e b e nns 1-1
R0 o o RS 1-1
1.2 COMPLIANCE. ...t bbbttt ettt b bbbt bt et et e e e nbe e nns 1-2
1.2.1 Joint Technical Architecture ComplianCe.ccoeeviviieciie i 1-2
1.3 Document conventions, Terminology, and DefinitioNs...........ccceceveeeesieeneese e 1-2
1.3.1 Conventions and TerMINOIOGY.c.eeueeiiuieieeiiiiesee st esee e e see e s e ebe e e reesseesreesaeeenns 1-2
1.3.1.1 Unified Modeling LanQUAgE.ccereruiririeieiesie sttt 1-2
1.3.1.2 Interface Definition LanNQUAJE.cccueiiveeiiriieeiie e esee st e see s sie e ee e sreesneenee 1-3
1.3.1.3 eXtensible Markup LanguagE.cccceuriererieriniesiesesiesee e 1-3
IR T30 7 S @ o @[] oo TS OPR SRR 1-3
1.3.15 ReqUIrEMENIS LANQUAGE.coeiteriiriirierieniieieee ettt sttt s 1-3
1.3.1.6 CF Interface and Operation 1dentifiCation.cccceieeiieeiincie e 1-3
1.3.2 DEfINITIONS. ...ccueicieciece et et e e ste e e s seesteeneesseenseenaesseeseeneesneensnnnenns 1-3
1.4 DOCUMENT CONTENL. ...ttt et be e e e e b e e saneenneesnneeneesaneenneeenns 1-4
1.5 APPHCADIE DOCUMENTS.oeiiiiiieieieeieeieee ettt b et e e sb e b nneens 1-4
1.5.1 GovernmMeNnt DOCUMENES.........coiuiaiieiieeitee e rtee e et ee e sre e neesse e s beesaeesreesneesaneesneeenns 1-4
1.5.2 Commercial DOCUMENTS.c..eeoueiiereeiesteesieeeeseeseeeeesseesaeeeesseesseeseesseessesnsessessseesesseessens 1-4

P2 O AV oY 1 L ST 2-1
2.1 Architecture Definition MethodolOgy.ccccooiiiiirininerieeeee s 2-1
2.2 ATCRITECIUIN @ OVEINVIBW.....oeiiiiiie ettt st st e e sbe et st sbe et sneens 2-1
2.2.1 Overview - SOftware ArChItECIUNE.cccveveeeerece e e e s e e e e 2-1
2.2.1.1 BusLayer (Board SUPPOrt PaCkage).ccccvevieiieiiiieiie et 2-2
2.2.1.2 Network & Serial INterfate SEIVICES.......ccovveieiieie e ese s e eee e neeas 2-2
2.2.1.3 Operating SYSIEM LAYENccuiiiieiie e siie ettt ettt 2-2
2.2.1.4 COrE FraAMEWOIK. ... ccceeieeeieeeieeeesieetesteesieeeeste e teeee e esseeseesseeseeneesseensesseesseensesneessens 2-3
2.2.15 CORBA MidIEBWArE.ccceiiiieiiiiiiriieiieiee e se sttt see e ssesteseessessessesseens 2-3
2.2.1.6 APPHCAION LAYES ...ttt sa e bbb 2-3

p A 30 R N oo o= (0] SRR 2-4
2.2.1.6.2 AGADLELS. ...ttt bbb et 2-4
2.2.1.7 Software Radio FUNCLIONal CONCEPLS.......coiviiiiieiieeiiee ettt 2-5
2.2.1.7.1 Software Reference MOEL.cccoviieiieieeeeseee e 2-5
2.2.1.7.2 ModemDevice FUNCLIONEIITY.cceeeeiieeiiecie e 2-7
2.2.1.7.3 NetworkResource and LinkResource FUNCtionality.cccceeerenenencsencnennns 2-8
2.2.1.7.4 1/ODeViCe FUNCHONAIILY......c.ccceieeciecie et ne s 2-9
2.2.1.7.5 SecurityDevice FUNCHONAIITY.ccoiririeieieresie e 2-10
2.2.1.7.6 UtilityResource FUNCLIONAIILY.cceeiiiieiiccece e 2-12
2.2.1.8 SyStEM CONLIOL.ccueiieiiieseesie et e e e 2-12
2.2.2 NEWOIKING OVEINVIEW.coveeiicieeie ettt ee st ste e st s e ae e e stesaesneenseeneesseensesnne e 2-13
2.2.2.1 External Networking ProtOCOIS.coiiiiiriiieeceeee e 2-14

MSRC-5000SCA

rev. 2.2

2.2.2.2 SCA Support for External Networking ProtoCols.cccecvveeveniesecsiesee e 2-15
2.2.3 Overview - Hardware ArChitECIUIE.oouvieeieee et 2-16
3 OPERATING ENVIRONMENT ...ttt 31
G I @0 T< = 1] T SV = 1 SRR 31
312 MiddIEWEIre & SEIVICES......ceiiiiirieriesie sttt sttt bbb b sbenneas 3-2
TN Nt R O @ | = L NSRRI 3-2
3.1.2.2 CORBA EXIENSIONS. ...ccveeveieesieeieaeesseesisseesseassesseesseessessessseesssssssssesssssseessesssesseessens 3-2
G A R N\ = 011 0 = Y/ S 3-2

TN 2 T o S V] o ST 3-2
3.1.2.3.1 USEOf LOQ SENVICE. ..oiiieeieie ettt ettt ettt et te e enaeeneenneas 3-2
3.1.2.3.2 LOGSErVICE MOAUIE. ...ttt 3-3

30 0 T T 1o o P 34
3.1.2.4 CORBA Event Service and Standard EVENLS...........ccceviveereeienienece e sie e 3-13
3.1.2.4.1 CORBA EVENE SENVICE. ...cviieeiiriesieeieeieeieeeiesee sttt seessesaessesressessesnens 3-13
3.1.2.4.2 StandardEVENt MOUIE.cceeiueee e 3-14
3.1.3 COre FramEBWOIK........ooiiiieieee ettt st s 3-16
3131 Base Application INTEITACES.cccoveiiririricee e 3-17
3000 50 5t o SRR RTRRRSN 3-18

TN 0 5t W I (= Yo = SRS 3-20
3.1.3.1.3 TeStablEODJECL.eiveeeeeieeieie et 321
31314 POITSUPPIIE ettt bbbt 3-23

G I 0 B T o 0] 0= S SRS 3-24
3.1.3.1.6 RESOUICE.veieie ettt sttt sttt e st ate e be e st e e st e snteenbeesnneennee s 3-26
3.1.3.1.7 RESOUICEFACIONY.uiiiiiieiiiiie sttt sre e nnreas 3-29
3.1.3.2 Framework Control INErfaCes.cceveeieieereeie s 3-32
G IR 220 I AV oo 10> 11 o o SRRSO 3-32
3.1.3.2.2 APPHICALTIONFACIONY. ...ttt sa b s 3-38
3.1.3.2.3 DOMAINMANAGETeeitieiuieeiiee it esieesteesteesae e st e saeesseesteesseessseessessnseesseesnseeaseess 3-44

TN O N I T Vo= SRS 3-62
3.1.3.2.5 L0AdabIEDEVICE.cceeiuiiiiiiieieertee et b e e 3-72
3.1.3.2.6 EXECULADIEDEVICE.oceeeieeeeceeecie ettt 3-75
3.1.3.2.7 AQOregatEDEVICE.ccceeiuiieiiee e ertee ettt e et e e re e sre e e s reenree s 3-79
3.1.3.2.8 DEVICEMANAGEYcoueiueeuieieieiesie sttt sttt se et e et e sae b b eneeneeneas 3-81
3.1.3.3 Framework Services INtErfaCes. ... 3-89
TN 0 0 50 I 1 1SS PSRS 3-89

TN IR T e 1S (= 1 SRS RTRRS 3-93
3.1.3.3.3 FIlEMANAGESttt 3-99

TN R N 1 2 1 PP S 3-103
G300 G 2 A B To 0= 1 g (01 =S 3-103
3.1.3.4.1 Software Package DESCIIPLOL.........cccueiieieieesieeee sttt 3-104
3.1.3.4.2 Software Component DESCIIPLOL.ccveruerierieriererie e 3-104
3.1.3.4.3 Software ASSembly DESCIIPLOL.ccccieiieeieieeie et 3-104
3.1.3.4.4 PropertieS DESCIIPLON. ...cvevireiitiriesieeieeee ettt 3-105
3.1.3.4.5 Device Package DESCIIPLON.cciiieerieiie et eiee ettt 3-105
3.1.3.4.6 Device Configuration DESCIIPLOLccoeririrerinenieieee e 3-105

MSRC-5000SCA

rev. 2.2 |
3.1.3.4.7 Profil€ DESCIIPLON.....ccveieeeeeeieete et ee st eeee ettt nre e sreeneeenaennn 3-105
3.1.3.4.8 DomainManger Configuration DESCIPLOL.ccceevereerierierriesiesee e 3-105
3.1.35 Core Framework BaSe TYPES.cccveurieerieieesieesieseesieesiesseesseeeesseessesneesseessesnesses 3-105
TN RGNt B D - = B Y/ o= S 3-105
3.1.3.5.2 DEVICESEQUENCE.eecueeieeieeteesteeeeeiee e eeesseestesseesseesesseesseesesseenseessesseensessensees 3-105
3.1.3.5.3 FIEEXCEPUION.cvieiieciee ettt st ene e aneas 3-106
3.1.3.5.4 INVAIIAFITENGIME. ..o e 3-106
3.1.3.5.5 InvalidObjeCtREFEIENCE.ccueeeiieee e 3-106
G0 G T G 101V7= o [o)1 =S 3-106
1T IRC RS AVAIN @ 0i (= 1= o (U1 o = RS 3-106
3.1.3.5.8 PrOPEITIES. ..ottt bbbt e 3-106
3.1.3.5.9 SUINGSEQUENCE.ooveiiiieeiee ettt ettt s e b e e s e e et e e sreeereenneas 3-106
3.1.3.5.10 UNKNOWNPIOPENTIES.......coviiiiisiesiisieeieee ettt st 3-106
3.1.3.5.11 DeVviCeASSIONMENTTYPE. .oooiuiiciieiee ettt ee ettt annas 3-106
3.1.3.5.12 DeviCeASS gNMENESEUENCE.ceeeeieieriestesiesresiesseeeeseeseeseesseseessessessessesneens 3-107
3.1.3.5.13 ErrOrNUMDBDEI TYPE. ...eeiee ettt ettt 3-107
G N o] o] 1= 4 Lo o PSSP PP 3-107
3.2.1 General Application REQUITEMENLS.ccceeiiiiiiieiieeiiee ettt et sneeeneens 3-107
Tt N R © R3S = VoS S 3-107
3.2.1.2 CORBA SEIVICES. ..ocueiuieuieieriesiestestestessessesesssessessestessessessessessessessssssessessessessessesses 3-108
00 I B O el |1 =00 =< 3-108
3.2.2 ApPPlication INLEITACES.ccveiiece e ere e 3-108
A S = 4V 101> L 3-109
3.2.2.1.1 ServiCe DEfINITIONS.oceiiiieiiiie et 3-109
3.2.2.1.2 API Transfer MEChaNISIMS.ccueeuvrierieeseerie ettt e s ae e 3-109
GG I oo [Tor= | I DT Y OSSR 3-110
T N B O LS 3= Y o= 3-111
3.3.2 CORBA SEIVICES. ...viiiiiueiuieiieieiiesiestestesteste st sseeseeeestestestessessessesseeseeeesessestestessessessenses 3-112
TG TG T O e 1 01 = === 3-112
T . (0 =SSR 3-112
34 General SOftWar @ RUIES.ocoiiiiieeieeee et sreenne e sneens 3-112
3.4.1 Software Development LanQUAGgES.cccueiueerieeiiieesieesreesieesseessesseeessesssseessesssaeenseens 3-112
G O R N1 A0S0 LY7o 3-112
34.1.2 LegaCy SOftWEAIE.........occueeiie ittt ettt enae e nreesnnas 3-113
4 HARDWARE ARCHITECTURE DEFINITION.....ccciteieieiese e enea 4-1
I = 7 1S T o Y o o] = T o RS 4-1
O O =5 U ot A | S 4-1
4.2.1 TOP LEVE Class SITUCIUIE.cccueeeecieeie ettt ettt ettt ettt nne s e ereeneenne e 4-2
4.2.2 HWMOAUIE(S) ClaSS SITUCTUIE. ..ottt 4-3
4.2.3 Class Structure With EXTENSIONS.cccueieriiririe e s seeseesseseesnas 4-3
V20 T I el O = LSS (= 1 o SR 4-4
4.2.3.2 MOAemM Class EXTENSION.ciiiiriririnierie ettt ee st sse b s e ssesneas 4-5
4.2.3.3 Processor Class EXIENSION.cccccvieeiieiieeiesieesie e sieeseeseesseessessessseessesseessesnsesneesses 4-6
4.2.34 INFOSEC CIESS...ccueiieieiesiesiesiestesiessesesesseesaessesaestessessessessessesssesssssessessessessessessessens 4-7
4.2.35 1/O ClasS EXIENSION.cceeiiiiiiieieeeesieesiesee e sie et e s te e sreensesneesneeeesneenns 4-8

MSRC-5000SCA

rev. 2.2

AN 1] 01U (= @] 1001] o] o S 4-8
G I D T 0 F= 1] o W O 1 = o - VOO PRT 4-9
4.4 Performance REAIEA ISSUES.cccuoiiiiiiiesi sttt nne s 4-9
45 General Hardwar @ RUIES. ...t 4-9
451 DEVICE PIOMIE. ..ottt b ns 4-9
4.5.2 Hardware Critical INTEIfaCES.cocuiiieiiiieseee ettt s 4-10
4521 Interface DEfINITION.cocoiiiiiiceeeee e 4-10
4522 Interface StaNAards.ccooeeiieriiiieree e 4-10
4.5.2.2.1 INerface SEIECHION. ...cc.ecceeceeieee e enne s 4-10

4.5.3 FOIM FBCLON. ...ttt et b e sae e e b e e ne e e e e e saeeenne 4-10
Y A Y/ oo (U1 = SRS 4-10

5 SECURITY ARCHITECTURE DEFINITION ...cciiiiiiieieiesie e 5-1
5.1 Additional CF Security REQUITEMENTS.cceiiiiiieieriesie et 5-1
o3 0 Y oo o= 11 o o SRR 51
5.1.2 APPIICAIONFACIONY.oviiteriiriieiieiieie ettt sttt s b e e e e sa et snesnenneas 5-1
5.1.3 DOMAINMANAGETcuvieiiieiieeitieeiteesee et e steessreesseeeteesaeeaseesseesseessesaseesseesseessesaseessesssenns 51

6 COMMON SERVICESAND DEPLOYMENT CONSIDERATIONS........cccovivevvriennns 6-1
6.1 COMMON SYSLEIM SEIVICES.viiitieiiieitie it e stee et e steeste e teeaaeesseesae e beeasseeareesseeebeessaeeseesnneans 6-1
6.2 Operational and Deployment CONSIAEr @tiONS.ccoererereerierenese e 6-1
7 ARCHITECTURE COMPLIANCE ..ottt 7-1
7.1 Certification AULNOTITY. .oo.ooiiiiieieee et ene e 7-1
7.2 Responsibility for Compliance Evaluation.ccooveiieiiie i 7-1
7.3 Evaluating ComMPIIANCE........cccoiiirereetieeee e sn b sre e 7-1
A R =0 A = 1A o] o USRS 7-1

APPENDIX A. GLOSSARY

APPENDIX B. SCA APPLICATION ENVIRONMENT PROFILE

APPENDIX C. CORE FRAMEWORK IDL

APPENDIX D. DOMAIN PROFILE

Figure 1-1.
Figure 1-2.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.

Figure 2-10.
Figure 2-11.
Figure 2-12.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3-20.
Figure 3-21.
Figure 3-22.
Figure 3-23.
Figure 3-24.
Figure 3-25.
Figure 3-26.
Figure 3-27.
Figure 3-28.
Figure 3-29.
Figure 3-30.
Figure 3-31.

MSRC-5000SCA

rev. 2.2 |
List of Figures

The Architecture Framework and its Relationship to Implementation.............c.......... 1-2
Color Coding Used in DocUmMeNnt FIQUIES...........ooiuieiieciee ettt 1-3
SOFIWEAIE SIIUCLUIE........eeiieeeieie ettt sttt a et b b e nne e 2-2
Example Message Flows with and without Adapters...........coceeceeiieiieecie e 2-5
Software ReferenCe MOGE]coiiirie e 2-5
Conceptual Model Of RESOUICES........cccoveiiiiiieeiiecie et sre e sreesne e 2-7
Example of MO RESOUICES..........cuiirirerieieie et 2-8
Example of Networking RESOUICES..........cooeiiiieiieiie ettt 2-9
EXampPIeS Of 1/0 RESOUITES.......ccueiirieiiiriiriieeeee ettt nre s 2-10
Examples of Security Devices and RESOUICEScceieeiiieeieeiie e cee st see e 2-11
Example of ULility RESOUICES..........cccceiiiirieiieiee et 2-12
External Network Protocols and SCA SUPPOITcceeveeevieiie et 2-13
SCA-Supported Networking Mapped to OSI Network Modelccccevvevernnnne. 2-15
Hardware Architecture FrameworK ... 2-17
Notional Relationship of OE and Application to the SCA AEP........ccoceviviviicnene. 31
(oo T 1 RSP 35
Core Framework IDL RelatioNSNiPScovviririeieieniesesie e 3-17
POrt INLEITACE UML ...ttt s 3-18
LifeCycle INterfate UML.........coi e 3-20
TestableObject INterfac@ UMLcooviiii e 3-22
PortSupplier INterface UML ... 3-23
PropertySet INterface UMLooove it 3-25
ReSOUrCe INEITACE UML ..ottt 3-27
ResourceFactory INnterface UMLc.oooiiiiececee et 3-29
Application INEfaCe UMLccoiiiriineeeee e 3-33
APPlICAtION BENAVIONiiiiiciie sttt 3-37
APPlCatiONFACIONY UML ...ttt 3-38
ApplicationFactory BEhaVIOrccuoiiiiiieieciie et 3-44
DomainManager INterfaCe UML ... 3-45
DomainManager Sequence Diagram for register DeviceManager Operation.......... 3-51
DomainManager Sequence Diagram for registerDevice Operation.............cco.e..... 3-53
DomainManager Sequence Diagram for register Service Operationcccccveenee.. 3-60
DeVviCe INEITACE UML ...t 3-63
State Transition Diagram for adminState..........cccocveiveiieeiie e 3-66
State Transition Diagram for allocateCapacity and deallocateCapacity................. 3-68
Release Aggregated DeviCe SCENAINO.......cciuiiiieiie s 3-70
Release CompoSite DeVICE SCENAIOccueeueeieeerienie ettt 3-70
Release Composite & Aggregated Device SCENAriocceeeeeeerieeiieseesiecie e 371
Release Composite Device in SHUTTING_DOWN State Scenario.........ccocveveeeneene 371
LoadableDevice INterface UML ... 3-73
ExecutableDevice INterfaCe UMLocvoiiiieiieienceseee e 3-76
AggregateDevice INterface UMLcoooiiiieie e 3-79
DeviceManager UMLoooiiieeeee et 3-82
DeviceManager Startup SCENAIMO.........ccuvieeiieiieceeie e este e st ae e sre e 3-86
FIE INEITACE UIML ..ottt nne s 3-90

Figure 3-32.
Figure 3-33.
Figure 3-34.
Figure 3-35.
Figure 3-36.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.

MSRC-5000SCA

rev. 2.2

FileSystem INterfaCe UMLcoveiiiece ettt 3-93
FileManager INterface UML ... 3-100
Relationship of Domain Profile XML File TYPES.....ccccevevieveeie e 3-104
Standard and Alternate Transfer Mechanism..........ccccccevvciiece s 3-110
Logical Device Interface RElationships.........ccoveeeieereieeseeie e 3-111
Top Level Hardware Class SITUCLUIEeoiueeiiiccee e s 4-2
Hardware Module Class SITUCLUIEc.vieririeieieese e e 4-3
O = S g (= 1 Lo o SR 4-5
Modem Class EXTENSION...........coiiiieiieireie et ese e ste e ssae s e aesseesseessesseesseensens 4-6
PrOCESSOE ClaSS.... e ciieiie ettt et e e e b e e s ra e e be e be e anreebeesnneenreeanes 4-7
INFOSEC ClaSS......cciiieiiicieciieieeetestese ettt esae e saastessesaesseesaeseessessessessessesnensens 4-7
[/O Class EXTENSION......cceeiiiiicie ettt st e e sr e st e e nbe e e nneenneas 4-8
Typical Hardware Device Description using the SCA HW Class Structure................ 4-9

vi

M SRC-5000SCA
rev. 2.2

Foreword

Introduction. The Software Communication Architecture (SCA) specification is published by the
Joint Tactical Radio System (JTRS) Joint Program Office (JPO). This program office was
established to pursue the development of future communication systems, capturing the benefits of
the technology advances of recent years, which are expected to greatly enhance interoperability of
communication systems and reduce development and deployment costs. The goals set for the
JTRS program are:

— Greatly increased operational flexibility and interoperability of globally deployed systems,
— Reduced supportability costs,

— Upgradeability in terms of easy technology insertion and capability upgrades, and

— Reduced system acquisition and operation cost.

In order to achieve these goals, the SCA has been structured to

— provide for portability of applications software between different SCA implementations,

— leverage commercia standards to reduce development cost,

— reduce development time of new waveforms through the ability to reuse design modules,
and

— build on evolving commercial frameworks and architectures.

The SCA is deliberately designed to meet commercia application requirements as well as military
applications. It is the expectation of the Government that the basic SCA will become a
commercially approved standard. It isfor this reason that a wide cross-section of industry has been
invited to participate in the development and the validation of the SCA. The SCA is not a system
specification, as it is intended to be implementation independent, but a set of rules that constrain
the design of systems to achieve the objectives listed above. The SCA specification version 1.0
established the baseline for architecture validation. The validation effort demonstrated that
multiple vendors could independently design systems, which, when built according to the SCA
requirements, meet the program goals outlined above. Lessons learned during the validation have
been incorporated in SCA version 2.0.

The SCA documentation consists of the basic architecture specification, a supplement on military
security, a supplement on definition of application program interfaces, and a rationale document.

Software Structure. The software framework of the SCA defines the Operating Environment
(OE) and specifies the services and interfaces that applications use from that environment. The OE
is comprised of:

- aCore Framework (CF),

- aCORBA middleware, and

- aPOSIX-based Operating System (OS) with associated board support packages.

Vil

M SRC-5000SCA
rev. 2.2

The OE imposes design constraints on waveform and other applications to provide increased
portability of those applications from one SCA-compliant radio platform to another. These design
constraints include specified interfaces between the Core Framework and application software, and
restrictions on waveform usage of the Operating System.

The SCA also provides a building block structure (defined in the APl Supplement) for defining
application programming interfaces (APIs) between application software components. This
building-block structure for API definition facilitates component-level reuse and allows significant
flexibility for developers to define waveform-specific APIs.

Core Framework. The CF is an architectural concept defining the essential, “core” set of open
software Interfaces and Profiles that provide for the deployment, management, interconnection, and
intercommunication of software application components in embedded, distributed-computing
communication systems. All interfaces defined in section 3.1.3 of the SCA Specification are part
of the CF. Core Application Services developers implement some of them; some are implemented
by non-core Applications (i.e. waveforms, etc.); and some implemented by hardware device
providers. The CF builds an information base from the collection of profiles, known as the Domain
Profile and provided with the hardware and software of the system.

Hardware Structure. The hardware framework also uses OO concepts to define typical hardware
partitions within realizable systems. The primary purpose of the hardware structure is to require
complete and comprehensive publication of interfaces and attributes once systems have been built.
With these published specifications, additional venders can provide modules within a system and
software developers can identify hardware modules with capabilities required for a particular
waveform application. Hardware modularity also facilitates technology insertion as future
programmabl e elements increase in capability.

Military Applications. To maximize the commercia application of the SCA and the resulting
benefit, military-unique requirements are provided in SCA supplements. Currently there are two
supplements to the SCA Specification:
- a Security Supplement identifies requirements to insure adequate protection of military
secure communications and to facilitate certification of JTRS products by the NSA, and
- an APl Supplement identifies structures associated with radio system services at various
interfaces such as physical, networking, security, and external interfaces. These APIs,
when fully defined, improve portability of applications within JTRS implementations, and
make reuse of functiona components of those applications easier. For example,
standardizing APIs for a security module within a JTRS enables reuse of common modules
for multiple waveform applications. Standardizing networking APIs improves portability
of networking applications and offers easier internetworking functions such as routing,
bridging and providing gateways.

Support and Rationale Document (SRD). This document provides the rationale behind
architectural decisions along with further supporting material.

Future Directions. The JTRS JPO intends to maintain the SCA Specification and Supplements
over the next year. The goa of the JPO is to transition maintenance of the SCA to a commercial

viii

M SRC-5000SCA
rev. 2.2

open-standards organization. Changes to the SCA will be incorporated based upon lessons-learned,
industry recommendations, and technology improvements. Changes to the Supplements will
similarly incorporate lessons-learned as well as definitions of additional services such as Quality of
Service monitoring and Fault Management.

Feedback. An open architecture framework is greatly improved through active feedback and
recommended changes from awide audience of potential users. The JTRS JPO solicits and
encourages feedback to this document and provides aform available from
http://www.jtrs.saalt.army.mil/docs/documents/sca.html. Send the completed form to
jtrs.sca@saalt.army.mil. Recommended additions to the SCA must be unencumbered by copyright
restrictions or intellectual property rights. Changes to the SCA are controlled by a JTRS JPO-
chaired Configuration Control Board (CCB).

http://www.jtrs.sarda.army.mil/docs/documents/sca.html
mailto:jtrs.sca@sarda.army.mil

MSRC-5000SCA
rev. 2.2 |

1 INTRODUCTION

The Software Communications Architecture (SCA) specification establishes an implementation-
independent framework with baseline requirements for the development of Joint Tactical Radio
System (JTRS) software configurable radios. These requirements are comprised of interface
specifications, application program interfaces (APIs), behavioral specifications, and rules. The
goal of this specification is to ensure the portability and configurability of the software and
hardware and to ensure interoperability of products developed using the SCA.

Companion documents to this specification are Supplements to the SCA and the SCA Support and
Rationale Document (SRD). The Supplements provide specific service and application interface
requirements (for Security, networking, other services). The SRD provides the rationale for the
SCA and examplesto illustrate the implementation of the architecture for differing
domaing/platforms and selected waveforms.

1.1 SCOPE.

This document provides a complete definition of the SCA. It isan Architecture Framework in that
it isprecise in areas where reusability is effected and it is general in other areas so that unique
requirements of implementations determine the specific application of the architecture. The SCA
defines the hardware and software at different levels of detail to allow the broadest reusability and
portability of components.

For hardware, the physical and environmental differences across domains are so diverse that
physical commonality cannot be achieved for all implementations. However, by using an Object-
Oriented (OO) description for the hardware, represented as hardware classes, all potential system
implementations are included within asingle framework. That framework has attributes (i.e.,
behavior and interfaces) that are applicable across those different implementations.

The architecture for software makes extensive use of object modeling and its definition is primarily
in the Core Framework (CF), an integral part of a system's Operating Environment (OE).
Constraints on the software devel opment, imposed by the architecture, are on the interfaces and the
structure of the software and not on the implementation of the functions that are performed. Inthis
way, innovative designs can be put forward with appropriate protection of the developer’s
intellectual property and still reap the benefits of wide reuse in other implementations of the
architecture. The SCA permits either hardware or software to be used in implementing a required
function. The approach taken also permits legacy solutions to be incorporated, where appropriate,
by encapsulation techniques to provide a“one-sided” standard interface into architecture interfaces.

This architecture specifies rules that further constrain implementations to adhere to open system
standards. Specific implementation requirements may augment the rule-set to increase reusability
within and across domains.

Figure 1-1 illustrates the concept of the SCA and its implementation down to specific platforms.
The hardware definition stays at a framework level with rules providing implementation guidance
down into domains and platforms. The software definition can be applied directly down to
implementation because of its general independence from hardware implementation. There are
special cases where size, weight, and power requirements limit the direct application of software

1-1

M SRC-5000SCA
rev. 2.2

objects. However, even in these cases, reusability of designs, captured in software and firmware
modeling and simulation tools, reduces the cost of implementation and the development time.

Software Communications |¢ HW i |i Sw
Architecture Framework | Classsand iR Core F(lg;’l)eworkg
Sub-classes || i
: L Operating :
........................ flg| i Environment
Domai N (OE)
malin : :
omans ¢ Object Models :
: & IDL
] SDECIfIC ObJeCtS \/: ---------------------- -:
I mplementation and Interface Specific Objects
Specifications

Figure 1-1. TheArchitecture Framework and its Relationship to Implementation

1.2 COMPLIANCE.

The interfaces, behavior, and rules that define compliance with the SCA areidentified in, and are
an integral part of this specification. These elements are selected to maximize portability,
interoperability, and configurability of the software and hardware while allowing a procurer the
flexibility to address domain requirements and restrictions. If any requirements stated in this
specification are in conflict with existing standards/specifications, this specification takes
precedence.

1.2.1 Joint Technical Architecture Compliance.

The Joint Technical Architecture (JTA) mandates the minimum set of standards and guidelines for
al DoD Command, Control, Communications, Computers, and Intelligence (C*) systems
acquisition. A foremost objective of the JTA isto improve and facilitate the ability of systemsto
support joint and combined operationsin an overall investment strategy. The SCA Operating
Environment is developed for embedded real-time radio designs and supports the JTA whereitis
applicable. The OE provides an architectural framework for a JTA system.

1.3 DOCUMENT CONVENTIONS, TERMINOLOGY, AND DEFINITIONS.

1.3.1 Conventions and Terminoloqy.

1.3.1.1 Unified Modeling Language.

The Unified Modeling Language (UML), defined by the Object Management Group (OMG), is
used to graphically represent SCA interfaces, scenarios, use cases, and collaboration diagrams.

MSRC-5000SCA
rev. 2.2 |

1.3.1.2 Interface Definition Language.

Interface Definition Language (IDL), also defined by the OMG, is used to define the SCA
interfaces. IDL is programming language independent and can be compiled into programming
languages such as C++, Ada, and Java.

1.3.1.3 eXtensible Markup Language.

eXtensible Markup Language (XML) isused in aDomain Profile to identify the capabilities,
properties, inter-dependencies, and location of the hardware devices and software components that
make up an SCA-compliant system

1.3.1.4 Color Coding.

Color-coding is used to differentiate between architecture elements and applications in diagrams as
shown in Figure 1-2.

Core Framework (CF) elements
Commercial-Off-The-Shelf (COTS) components
Host Applications

Red Side Network and Link Applications
Security Applications

Black Side Network and Link Applications
Modem Applications

RF

Figure 1-2. Color Coding Used in Document Figures

1.3.1.5 Requirements Language.

Interfaces, behavior, and rules that are imposed by this specification appear in sections 3 through 5
and are indicated by the word "shall". Editorial notes are contained within brackets and are
italicized ({example}).

1.3.1.6 CF Interface and Operation Identification.

CF interfaces and their operations are presented in italicized text. Core Framework Base Types
(3.2.3.5) are prefixed with “CF’ when used in textual descriptions (e.g. "each item valueisaCF
Properties type").

1.3.2 Definitions.
Definitions are included in Appendix A.

1-3

M SRC-5000SCA
rev. 2.2
1.4 DOCUMENT CONTENT.

This document provides an overview of the SCA in section 2, followed by the Software, Hardware,
and Security architecture requirementsin sections 3 —5. Section 6 addresses requirements not
contained in those functional categories. Evaluation criteriafor product compliance to this
specification are addressed in section 7.

Appendicesinclude a glossary, a complete listing of CF IDL, and details of architecture
requirements introduced in the main document.

15 APPLICABLE DOCUMENTS.

The following documents are applicable to the SCA either by direct reference or as foundation for
the architecture definition.

151 Government Documents.

Joint Technical Architecture, Version 2.0, 26 May 1998.

Operationa Requirements Document (ORD) for the Joint Tactical Radio System (JTRS), Version
2.2, 30 January 2001.

1.5.2 Commercial Documents.
C Standard: Programming languages — C, ISO/IEC 9899:1990.
DCE UUID standard (OSF Distributed Computing Environment, DCE 1.1 Remote Procedure Call).

“Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley Professional
Computing) Gamma, Helm, Johnson, and Vlissides.

|[EEE 802.1 [Medium Access Control (MAC) addresses] |IEEE Standards for Local and
Metropolitan Area Networks: LAN/MAN Bridging & Management.

ISO/IEC 10731 Conventions for the Definition of OSI Services, Annex D Alternative and
Additiona Time Sequence Diagrams for Two-party Communications.

mMinimumCORBA: OMG Document orbos/98-05-13, May 19, 1998.

OMG Document formal/00-11-01: Interoperable Naming Service Specification.
OMG Event Service: OMG Document formal/01-03-01: EventService, v1.1.

OMG Event Service IDL: OMG Document formal/01-03-02: EventService IDL, v1.1.
POSIX.1: Application Program Interface |SO/IEC 9945:1996

POSIX 1003.13: Standardized Application Environment Profile - POSIX" Realtime Application
Support (AEP), IEEE Std 1003.13-1998.

UML: OMG (Object Management Group) Unified Modeling Language Specification, Version 1.3,
March 2000.

Y POSIX isaregistered trademark of the Institute of Electrical and Electronics Engineers, Inc.

M SRC-5000SCA
rev. 2.2

XML: W3C (World Wide Web Consortium) Recommendation: Extensible Markup Language
(XML) 1.0, Feb 1998.

1-5

MSRC-5000SCA
rev. 2.2 |

2 OVERVIEW

This Section presents an overview of the SCA. Emphasisis on identifying the components of
the architecture and the manner in which these components interact. Technical details and
requirements of the architecture are contained in Sections 3 - 5.

21 ARCHITECTURE DEFINITION METHODOLOGY.

The architecture has been devel oped using an object-oriented approach wherein the process can
be continued beyond the framework definition to product development. UML is used to
graphically represent interfaces while IDL is used to define them; both have been generated
using standard software development tools, allowing product development to continue directly
from the architecture definition.

2.2 ARCHITECTURE OVERVIEW.

2.2.1 Overview - Software Architecture.

The structure of the software architecture is shown in figure 2-1. The key benefits of the
software architecture are that it:

1. Maximizesthe use of commercial protocols and products,

2. Isolates both core and non-core applications from the underlying hardware through
multiple layers of open, commercia software infrastructure, and

3. Providesfor adistributed processing environment through the use of the Common Object
Reguest Broker Architecture (CORBA) to provide software application portability,
reusability, and scalability.

The software architecture defines an Operating Environment (OE) with the combined set of CF
services and infrastructure software (including board support packages, operating system and
services, and CORBA Middleware services) integrated in an SCA implementation. The software
partitions that illustrate applications are typical of how waveforms might be implemented using
the SCA.

2-1

MSRC-5000SCA

rev. 2.2
Applications
Core Framework (CF)
OE Commercial Off-the-Shelf
(COTS)
Non-CORBA Non-CORBA Non-CORBA
Modem Security 1/10
Components Components Components ||
IIII # IIII IIII = IIII IP_‘ III
Link, Network Security|| Security || Security| Link, Network 110 1/10
Components Adapter || Components|| Adapter Components IAdapter|| Components|
[LLC/Network API]I_Security API L] [LLC/Network API j 1/0 API]
Core Framework DL = (“Logical Software Bus’ via CORBA)
— k : i — |
I S 5 [=~ I Rz
CORBA ORB & CF CORBA ORB & CF
Services Services & Services Services &

(Middleware) Applications M| (Middleware) Applications]

Operating System H | Operating System H

Network Stacks & Serial Interface Services il Network Stacks& Serial Interface Services [|

Board Support Package (Bus L ayer) B Board Support Package (Bus L ayer) B

Black Hardware Bus I I Red Hardware Bus

Figure 2-1. Software Structure

2.2.1.1 BusLayer (Board Support Package).

The Software Architecture is capable of operating on commercial bus architectures. The OE
supports reliable transport mechanisms, which may include error checking and correction at the
bus support level. Possible busesinclude VME, PCI, CompactPCl, Firewire (IEEE-1394), and
Ethernet. The OE does not preclude the use of different bus architectures on the Red and Black
subsystems.

2.2.1.2 Network & Serial Interface Services.

The Software Architecture relies on commercial components to support multiple unique seria
and network interfaces. Possible serial and network physical interfaces include RS-232, RS-422,
RS-423, RS-485, Ethernet, and 802.x. To support these interfaces, various low-level network
protocols may be used. They include PPP, SLIP, LAPX, and others. Elements of waveform
networking functionality may also exist at the Operating System layer. An example of this
would be acommercia IP stack that performs routing between waveforms.

2.2.1.3 Operating System Layer.

The Software Architecture includes real -time embedded operating system functions to provide
multi-threaded support for applications (including CF applications). The architecture requires a
standard operating system interface for operating system servicesin order to facilitate portability
of applications.

Portable Operating System Interface (POSIX) is an accepted industry standard. POSIX and its
real-time extensions are compatible with the requirements to support the OMG CORBA

2-2

MSRC-5000SCA
rev. 2.2 |

specification. Complete POSIX compliance encompasses more features than are necessary to
control atypical implementation. Therefore, this specification defines aminimal POSIX profile
to meet SCA requirements. The SCA POSIX profile is based upon the Real-time Controller
System Profile (PSE52) as defined in POSIX 1003.13.

2.2.1.4 Core Framework.

The CF isthe essential (“core”) set of open application-layer interfaces and services to provide
an abstraction of the underlying software and hardware layers for software application designers.
Section 3 presents the complete definition of all services and interfaces of the CF. The CF
consists of:

1. BaseApplication Interfaces (Port, LifeCycle, TestableObject, PropertySet,
PortSupplier, ResourceFactory, and Resource) that can be used by all software
applications,

2. Framework Control Interfaces (Application, ApplicationFactory, DomainManager,
Device, LoadableDevice, ExecutableDevice, AggregateDevice and DeviceManager)
that provide control of the system,

3. Framework Services Interfaces that support both core and non-core applications (File,
FileSystem, FileManager, and Timer), and

4. A Domain Profile that describes the properties of hardware devices (Device Profile)
and software components (Software Profile) in the system.

The Domain Profile supports the combination of resources to create applications. Device Profile
and Software Profile files utilize an XML vocabulary to describe specific characteristics of either
software or device components with regard to their interfaces, functional capabilities, logical
location, inter-dependencies, and other pertinent parameters.

2.2.15 CORBA Middleware.

CORBA is used in the CF as the message passing technique for the distributed processing
environment. CORBA is a cross-platform framework that can be used to standardize
client/server operations when using distributed processing. Distributed processingisa
fundamental aspect of the system architecture and CORBA isawidely used “Middleware’
service for providing distributed processing.

All CF interfaces are defined in IDL. The CORBA protocol provides message marshalling to
handle the bit packing and handshaking required for delivering the message. The SCA IDL
defines operations and attributes that serve as a contract between components.

2.2.1.6 Application Layer.

Applications perform user communication functions that include modem-level digital signal
processing, link-level protocol processing, network-level protocol processing, internetwork
routing, external input/output (1/0) access, security, and embedded utilities. Applications are
required to use the CF interfaces and services. Applications direct access to the Operating
System (OS) is limited to the services specified in the SCA POSIX Profile. Networking
functionality that may be implemented below the application layer, such as acommercial IP
network layer, is not limited to the SCA POSIX Profile sinceit existsin the OS kernel space.

2-3

M SRC-5000SCA
rev. 2.2

2.2.1.6.1 Applications.

Applications consist of one or more Resources. The Resource interface provides acommon API
for the control and configuration of a software component. The application developers can
extend these definitions by creating specialized Resource interfaces for the application. At a
minimum, the extension inherits the Resource interface. Examples of Resource extensions are:
LinkResour ce, Networ kResour ce, and UtilityResour ce.

Devices are types of Resources used by applications as software proxies for actual hardware
devices. ModemDevice, 1/0ODevice, and SecurityDevice are examples that implement the Device
interfaces.

ModemDevice, LinkResource, SecurityDevice, |/ODevice, and NetworkResource are Core
Framework interface extensions that implement APIs for waveform and networking applications.

The design of aResource’ s internal functionality is not dictated by the Software Architecture.
Thisisleft to the application developer. Core applications, which are a part of the CF, support
the non-core applications by providing the necessary function of control as well as standard
interface definitions. The interfaces by which a Resource is controlled and communicates with
other Resources are defined in section 3.

2.2.1.6.2 Adapters.

Adapters are Resources or Devices used to support the use of non-CORBA capable elementsin
the domain. Adapters are used in an implementation to provide the trand ation between non-
CORBA -capable components or devices and CORBA -capable Resources. The Adapter concept
is based on the industry-accepted Adapter design pattern®. Since an Adapter implements the CF
CORBA interfaces known to other CORBA -capable Resources, the trandation serviceis
transparent to the CORBA -capable Resources. Adapters become particularly useful to support
non-CORBA -capable Modem, Security, and Host processing el ements. Figure 2-2 depictsan
example of message reception flow through the system with and without the use of Adapters.
Modem, Security, and Host Adapters implement the interfaces marked by the circled letters M,
S, and H respectively. Notice that the Waveform Link and Network Resources are unaffected by
theinclusion or exclusion of the Adapters. The interface to these Resources remains the samein
either case.

! “Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley
Professional Computing) Gamma, Helm, Johnson, and Vlissides, pg. 139

2-4

MSRC-5000SCA

rev. 2.2 |
Non-CORBA | Modem | | Security |) [Non-coraa | °)| security Host [()| Non-corBA
1) M odem Adapter Adapter SecurityDevice Adapter Adapter Host
oy “f © © A, of®
4 CORBA |~ .| Waveform g CORBA —@ S| waveform :C: CORBA
M odemDevice @ LinkResour ce 3 SecurityDevice @ Networ kResour ce ®) HostResource

M essage Reception Path (with Adapters)

(1) RF Interface to M odem

(2) non-CORBA Modem Interface

(3) CORBA Interfaceto Waveform Link @
(4) CORBA Interface to Security Adapter @
(5) Black-side non-CORBA Security Interface
(6) Red-side non-CORBA Security Interface
(7) CORBA Interface to Waveform Networ k
(8) CORBA Interfaceto Host Adapter (H)

(9) non-CORBA Host I nterface

—_— ==

Figure 2-2. Example M essage

2.2.1.7 Software Radio Functional Concepts.
2.2.1.7.1 Software Reference Model.

The software reference model depicted in Figu
Communication System (PMCS) Reference M

M essage Reception Path (without Adapters)

(1) RF Interface to Modem

(2) CORBA Interfaceto Waveform Link @
(3) CORBA Interfaceto Security @

(4) CORBA Interface to Waveform Networ k @
(5) CORBA Interfaceto Host (H)

Note: The design goal of a CORBA gateway “Adapter” isto
define the CORBA side of the gateway such that the eventual
replacement of the non-CORBA device and its Adapter does
not change the Core Framework CORBA interface.

Flowswith and without Adapters

re 2-3 is based upon the Programmable Modular
odel. This model forms a basis for the SCA by:

1. Introducing the various functional roles performed by software entities without
dictating a structural model of these elements, and
2. Introducing the control and traffic data interfaces between the functional software
entities.
[] Digital Data [
< >
[Antenna RE Black Proc. Security Inter networ
Waveform Utility, Utility, » 10
Router, Router,
Air Network, Network,
Bridge, Bridge,
i e <> 4>
A A
R | =
. . 5 - Security Monitor « . HCI
" . . * (part of INFOSEC)* .
Control - o 5 . (Data)
Ol “§NE mE] -] [+] | ",
o = - o ility,
. A A v 'a/stellw Control v Access
: .
- v Utility,
\ HCI (Control) Access

Figure 2-3. Software Reference Model

2-5

M SRC-5000SCA
rev. 2.2

The Reference Model identifies relevant functionality but does not dictate the architecture. The
SCA readlizes the Software Reference Model by defining a standard unit of functionality called a
Resource. All applications are comprised of Resources and using Devices. Specific resources
and devices can be identified corresponding to the functional entities of the Software Reference
Model:

ModemDevice: addresses Antenna, RF, and Modem entities,
LinkResource: addresses Black Processing entity,

SecurityDevice: addresses Security entity,

NetworkResource: addresses Internetworking entity,

|/ODevice: addresses external interfaces such as serial, Ethernet, and audio
UtilityResource: addresses non-Waveform functionality.

System control entity functionality is addressed by the core framework applications. Application,
ApplicationFactory, DomainManager, Device, LoadableDevice, ExecutableDevice,
AggregateDevice, and DeviceManager. Control functionality may also be localized in individual
resources.

Figure 2-4 shows examples of implementation classes for Resources. The operations and
attributes provided by LifeCycle, TestableObject, PortSupplier, and PropertySet establish a
common approach for interacting with any resource in a SCA environment. Port can be used for
pushing or pulling messages between Resources and Devices. A Resource may consist of zero or
more input and output message ports. The figure also shows examples of more specialized
resources and devices that result in specific functionality for each of six example types.
Clarification of the functionality associated with each of thoseis provided in the following
subsections. Examples of Devices in the following sections and figures can be examples of
Device, LoadableDevice, and ExecutableDevice.

2-6

MSRC-5000SCA

Core Framework (CF)

rev. 2.2 |
|
| Base Application Interfaces ! F';A_egggn % Seaurity [nternet HCI
i - - er Utility, Utility,
: : Port]‘ P_lfe(.\/cle]\ \[T&etableob]ect]\ \[PropertySet]\ \[POI"ESJpplIer‘] : RE Router Bt Uty
Network Network .
| 1 B Bridge Bridge Access
1 Link Link
|
1
|

are example types of are example types of
ModemDevice |/ODevice SecurityDevice NetworkResource LinkResource UtilityResource
MAC or Physical AP| 4 Security AP'ZF Network API LLC API
areexampletyres of are example types of are exampletypes of aree‘zxampletypes of areexampletypesof areexampletypes of
Modem Repeater Security Router Bridge Gateway Host
Adapter Device Adapter Resour ce Resource | | Resource | | Adapter |
I
Waveform Ethernet Serial Security Waveform Waveform ‘ n ‘ ‘ .
ModemDevice Device Device DomainDevice NetworkResource LinkResource ‘MQFIHSTRGS)LII’CE‘ ‘ STAWm‘
[] |]

Figure 2-4. Conceptual Model of Resour ces

2.2.1.7.2 ModemDevice Functionality.

The ModemDevice provides a standard for the control and interface of amodem, which
encapsulates diverse implementations of smart antenna, RF, and modem functions. The base
application interfaces are extended to modem devices through a Physical, Medium Access
Control (MAC), or Logical Link Control (LLC) API (see the API Supplement to the SCA),
which provides a standard interface for control and communication with modem operations from
ahigher (e.g., link layer to aMAC) resource. The functions, performed by the ModemDevices,
will vary depending on waveform requirements as well as hardware/software allocation and are
not dictated by the CF. Typical RF and modem functions are depicted in Figure 2-5.

2-7

MSRC-5000SCA

rev. 2.2
Modem Black security Internet HCI
Repeater Utility, Utility,
RE Router Router Utilit
Waveform Network Network A eZs
1 o Seice Bridge Bridge "*°°
e i i
o0 Link Link
A A Core Framework (CF)
are | example types | of
LinkResource| 1 1. ModemDevice

LLC API Physical or MAC API
are example types of
et aite Dises WaveformM odemDevice WaveformRF_Adapter Device Repeater Adapter Device
TrandateM odem
: ! : 5
M odulate Demodulate& UpConvert & - ~
Interleave Deinter leave DownConvert Retransmit
FEC_Encode FEC_Decode GainControl ControlModem
Spread Despread LevelControl
Filter Synchronize FreqqencyControI
Track Correlate E_quallze
AcquirePacket SchedulePacket Filter
TimeStamp TRANSEC BeamSteer
selfTest InterferenceNull
<lfTest

Figure 2-5. Example of Modem Resour ces

2.2.1.7.3 NetworkResource and LinkResource Functionality.

An example of networking resources is shown in figure 2-6. The CF base application interfaces
are extended to link layer and network layer resources through APIs (see section 2.2.2.2),
provided to enable information transfer and support of specific service characteristics for
networking applications. Examples are the Link-LLC APl and Network-MAC API, which
provide standard interfaces for control and communication between network, link, and transport

layer resources.

The functions performed by the waveform networking and internetworking resources (examples
shown in note boxes in figure 2-6) will vary depending on waveform requirements as well as
networking requirements and are not dictated by the CF. Resources that provide networking
behavior, including repeater, link, bridge, network, router, and gateway operations, are

representative and not defined in the SCA.

2-8

Device

b

Repeater Device

Retransmit
ControlModem

MSRC-5000SCA

rev. 2.2 |
Modem Black security Internet HCI
Repeater Utility, Utility,

RF Router Router Utility,
Waveform Network Network Acce§
Bridge Bridge
Link Link

Resource

AR —

Core Framework (CF)

example type of are example types of\
ModemDevice 1.* 1 UtilityResource
Physical API 1 A
LinkResource 1 1 | NetworkResource !
LLC API Network API GatewayResour ce
T
T !
: are example types of are example types of TranslateM essage
TranslateVoice
TranslateVideo
WaveformLinkResour ce BridgeResource Router Resour ce WaveformNetwor kResour ce

Packetize
SchedulePacket
PrioritizePacket
AddressPacket
RoutePacket

ControlModem
selfTest

M easureL inkQuality
Analyzel inkQuality

1

1
Forwar dPacket
Forwar dQoS
PrioritizePacket
AddressPacket

TranslateAddress
Route

Multicast
Broadcast
Discover M obileNode
MaintainRoutingTable
Forwar dQoS

Figure 2-6. Example of Networking Resour ces

2.2.1.7.4 1/ODevice Functionality.

Examples of 1/0ODevices are shown in Figure 2-7. An 1/ODevice provides access to system
hardware devices and external physical interfaces. The operations performed by an I/ODevice
will vary depending on the system hardware assets as well as the physical interfacesto be
supported and are not dictated by the CF. Typical I/O operations are depicted within the

exampl e subclasses.

2-9

RouteM essage
MulticastM essage
BroadcastM essage
Discover Neighbor
MaintainRoutingT able
Forwar dQoS

M easur eNetwor kQuality
AnalyzeNetworkQuality
selfTest

1 / Device
E Resource
T % S

< UtilityResource

MSRC-5000SCA

rev. 2.2
Modem Black security Internet HCI
Repeater Utility, Utility,

RE Router Router Utility
Waveform Network Network o
Bridge Bridge
Link Link

Core Framework (CF)

are example types of
1 1 example type of
NetworkResource
Network API 1* 1.*
LinkResource |/ODevice
1 1.
LLC API
are example types of
|
SerialDevice EthernetDevice

AudioDevice

ConfigurePort
TransmitM essage

ReceiveM essage
selfTest

ConfigurePort
TransmitM essage
ReceiveM essage
selfTest

ConfigurePort
EncodeAudio
DecodeAudio
TransmitM essage
ReceiveM essage

Figure 2-7. Examplesof I/O Resources

2.2.1.7.5 SecurityDevice Functionality.

Examples of SecurityDevice and SecurityResource are shown in Figure 2-8. Typical security
operations are depicted within the example subclasses. SecurityDevice subclasses extend
security functions to hardware devices within the system while SecurityResour ce subclasses
extend security functions to software components. There can be awide variation of security
solutions both in hardware and software. Transmission security (TRANSEC) and
communications security (COM SEC) requirements also vary between waveforms. The location
of the security boundary with respect to networking requirements al so varies between
waveforms. The CF base application interfaces are extended to SecurityResour ces through
Security APIs, which provide standard interfaces for control and communication between

security devices and resources and application waveforms.

2-10

1

Device

—

Resource

N

N

MSRC-5000SCA

Modem Black
Repeater Utility,
RE Router
Waveform Network
Bridge
Link

Security

rev. 2.2 |
Internet HCI

Utility,

Router -

Network Xt'“ty’
Bridge

Link

Core Framework (CF)

are example types of are example types
I/ODevice 1.x 1.* 1 NetworkResource
Network API
1.* 1.% |

ModemDevice i i ili
‘ 1= 1+ SecurityDevice L n UtilityResource
MAC or Physical API Security AP -

1.* '
/V % b\ LinkResource
I t f 1.*
/ are example | ypes of LLC API
INFOSECAdapter Device Embedded| NFOSECDevice Exter nal INFOSECDevice

Trandatel NFOSEC

SecurityResour ce

Figure 2-8.

Encrypt
Decrypt
GenerateTRANSECStream
Bypass

Zeroize

Authenticate

Load Key
Synchronize/Resynchronize

2-11

Security API

7

R

are exampletypes of
\

TRANSEC_Resource

Guard_Resource

Generate TRANSEC
Stream

Examples of Security Devices and Resour ces

Control Data Path
Control Access
Monitor Security

M SRC-5000SCA
rev. 2.2

2.2.1.7.6 UtilityResource Functionality.

An example of UtilityResourceis shown in Figure 2-9. The operations performed by the utility
resources will vary depending on the embedded applications to be supported as well as host
interface protocol requirements and are not dictated by the CF. Typical utility operations are
depicted within the example subclasses. Ultimately, the UtilityResour ce encompasses any non-
waveform application that could execute in an SCA-compliant system.

2.2.1.8 System Control.

The SCA provides a specification for interfaces, services, and dataformats for the control of
resources. Each resource establishes its controllable parameters with the DomainManager viaa
Domain Profile. Applications constrain each resource's parameter values to their own needs.
Applications controllable parameters are also in the Domain Profile.

Use of CORBA and the base application interfaces provides the means to have domain and
application control though acommon interface. SerialDevice and EthernetDevice (in Figure 2-7)
are examples of the external interfaces available to auser. These examples show that system
control operations operate with human or machine interfaces either locally or remotely and
interact in amanner that facilitates portability.

Non-CORBA user terminals are interfaced through the use of Adapters.

Modem Black security Internet HCI
Repeater Utility, Utility,
RE Router Router Utility,
Waveform Network Network o
Bridge Bridge
Link Link
1 T ——
Resource Device Core Framework (CF)
0..* —
are exa‘lmple types of
NetworkResource 1 I/ODevice
1.*
Network API 1 /
LinkResource = 1 UtilityResource
LLC API -
are example types of
|
GatewayResour ce M sgFilter Resour ce SitAwar eResour ce HostAdapter Resour ce
TranslateHost

1 1 1
TranslateM essage TypeFilter CollectPositionReports
TranslateVoice GeographicFilter ConsolidatePositionReports
TrandateVideo PriorityFilter DisseminatePostionReports
self Test selfTest

Figure 2-9. Example of Utility Resour ces

2-12

2.2.2 Networking Overview.

MSRC-5000SCA
rev. 2.2 |

SCA-compliant Radio Systems communicate with peer systems through protocols as shown in
Figure 2-10. The external networking protocols between an SCA-compliant System and its peers
are part of waveform applications and are not specified by this architecture specification.
However, the interface definitions for the services required to implement the protocols within a
SCA-compliant System are specified (in the APl Supplement).

_

AN

Peer
Radio
System

Peer
SCA Radio Externd
System Networking
Protocols

Networ kResource

LLC

AP
Service

Definition

Networking

Transfer

Protocol

LinkResource

Mechanism

Entities

MAC or
Phyiscal API
Service
Definition

N

Typicaly
CORBA IDL,
GIOP, & 1I0OP

Typically each external networking protocol
will be implemented by a different set of
one or more protocol entities.

Figure 2-10. External Network Protocolsand SCA Support

2-13

M SRC-5000SCA
rev. 2.2

2.2.2.1 Externa Networking Protocols.

External networking protocols define the communications between a SCA-compliant Radio
System and its peer systems. These external-networking protocols can run over wireless or
wireline physical media. Example protocols include Single Channel Ground/Airborne Radio
System (SINCGARS), Ethernet, HF Automatic Link Establishment (ALE), IEEE 802.11, IS-
95A, IP, and future networking protocols.

Through the external networking protocols, implemented by applications in a SCA-compliant
radio system and its peer systems, a network of nodes is formed interconnected by repeaters,
bridges, routers, and/or gateways. Asshown in Figure 2-11, external-networking protocols will
typically interconnect at different layers using:

1. Physical layer interconnections with a repeater function,

2. Link layer interconnections with a bridge function,

3. Network layer interconnections with standard network routing, and/or
4. Upper layer interconnections with application gateways.

The different categories of interoperability are outlined below based upon the OSI Model. There
may be multiple levels of interoperability within the same system on a waveform-by-waveform
basis.

A. Physical Layer Interoperability. The external networking protocols provide a
compatible physical interface, including the signaling interface, but no higher layer
processing. Thislevel of interoperability is adequate for a simple bit-by-bit bridging
or relay operation between two interfaces.

B. Link Layer Interoperability. The external networking protocols provide link layer
processing over al physical interfaces. Thislevel of interoperability is adequate for
allowing the radio to be used as transport and for allowing the radio to use another
network as transport. Intelligent routing or switching decisions are limited to local
layer 2 routing.

C. Network Layer Interoperability. The externa networking protocols provide network
layer address processing interoperability. The radio and the networks being inter-
operated are sub-networks of the same Inter-network. At thislevel, intelligent
switching and routing decisions can be made end-to-end.

D. Host Leve Interoperability (Layers 4 — 7). Embedded applications can exchange
information with hosts attached to the network. An example of thisis a handheld
radio that contains embedded Situation Awareness (SA) application exchanging SA
updates with a vehicular platform in an external sub-network. In thisexample, the
radio provides message payload trandations to allow two otherwise incompatible
hosts to communicate.

2-14

MSRC-5000SCA
rev. 2.2 |

OSl Layers Wireless to Wireless Wireless to Wireline symbology
7 - Application F(?ateway Sateway . Traffic Flow is up one side
6 - Presentation - esource B . esource B of protocol stack and down
5 - Session Utility Utility Utility Utility the other side
Resource Resource Resource Resource « Traffic flow up or down the
4 - Transport protocol stack is shown via
&@ while traffic flow
Network API Network API from one side of the
protocol stack to the other
a8 Inter-network Inter-network is shown by (2) & (@)
3 Inter- Resource Resource The Lower Layer API
i network interface is used for flows
N &@ while the Upper
e Layer APl is used for
t flow (3.
W LLC API LLC API » Resources shown asd
3 Waveform Waveform can flow data vertically,
© Intra-network Intra-network Resources shown ass
r Sub- n can flow data horizontally,
network Resource Resource and Resources shown as
k
[can flow data
vertically and/or
LLC API LLC API horizontally.
2 - Link Wavefori Waveform] Waveform Wireline
Link Link Link Link Upper Layer API
Resource Resource Resource Resource T Inter-Networking v
) Physical Resource
Physical API API ¢
Repeater |
Resource Waveform @ Lower Layer AP @
1- Physical Waveform Waveform MOdem Wireline I Intra-networkin
Modem Modem Device Resource
Device Device Lower Lower
Layer Layer
RF RF RF Resource Resource

Figure 2-11. SCA-Supported Networking Mapped to OSI Network M odel

2.2.2.2 SCA Support for External Networking Protocols.

Figure 2-10 shows that within an SCA-compliant Radio System, application protocol entities are
used to implement the external networking protocols. These protocol entities are networking
applications’. Entity types that support external networking protocols include ModemDevice,

2 External networking protocol entities can reside within an application or within the kernel
space of operating systems. These external networking protocol applications are not necessarily
the same as OSl layer 7 applications. (When an application uses protocol entities within the OS
kernel space, and that kernel spaceis aso used for internal system CORBA transport protocol,

2-15

M SRC-5000SCA
rev. 2.2

LinkResour ce, Networ kResour ce, SecurityDevice, 1/0ODevice, and UtilityResource. Typically,
each waveform or wireline protocol will be implemented by a unique set of one or more protocol
entities. A unique set of protocol entitiesimplements the protocol stack specified by awaveform
or wireline protocol. A radio system implementing multiple waveform applications may have
multiple protocol entities at each protocol layer.

In order to support application portability, standard interfaces are required between application
protocol entities. These Networking APIs support the concept of a service interface between a
service provider (usualy the lower OS| protocol layer) and a service user (usually the higher OSI
protocol layer).

Networking APIs, like other waveform application APIs, are extensions to the CF base
application interfaces that are inherited from the CF Resource class. APIs can be extended
allowing vendors to provide value-added features that distinguish themselves from their
competitors.

Two Networking API types areillustrated in this section: an LLC APl associated with the
LinkResource and a Network API associated with the NetworkResource. The APIs can be
mapped into the OSI Networking Protocol model as shown in Figure 2-11. Thisfigure shows
two very similar protocol stacks for wireless-to-wireless networking and wireless-to-wireline
networking. The differenceis that the wireline stack has a WirelineDevice at the physical layer
instead of a ModemDevice. (Note that the OSI network layer maybe split into multiple network
resources as shown in Figure 2-11. In most cases, the layer 3A sub-network hasan LLC API to
the upper layer 3B inter-network (for example when layer 3B isIP). However, for some network
waveform protocols, the layer 3A interface may be the network API).

The SCA defines an API Instance to provide the mechanism for distributing the protocol layers
within a SCA-compliant Radio System. An API Instance is a coupling of a Networking API
Service Definition and a Transfer Mechanism for a particular waveform implementation. The
Service Definition for awaveform details the primitives (operations), the parameters (variables),
their representation (structures, types, formats), and its behavior. The transfer mechanism
provides the communication between the waveform protocol layer service provider and a service
user. CORBA isthe preferred transfer mechanism. Because security requirements for a
particular implementation may be met using services associated with CORBA, later introduction
of adifferent transfer mechanism requires careful analysis of the security services that can be
provided by that transfer mechanism. Figure 2-10 shows the relationship between protocol
entities, Service Definitions, and Transfer Mechanisms.

2.2.3 Overview - Hardware Architecture.

Partitioning the hardware into classes places emphasis on the physical elements of the system
and how they are composed of functional elements. These classes define common elements
sharing physical attributes (characteristics and interfaces) that carry over to implementation for
specific domain platforms. The same framework appliesto all domains. Appropriate application
of the requirements leads to common hardware modules for different platforms. A summary
view of the hardware framework is shown in figure 2-12.

additional security protection may be required to prevent external network nodes from directly
connecting with internal CORBA aobjects.)

2-16

SCA-Compliant Hardware

K

Chassis

/

HW Moduleg(s)

b

[

M SRC-5000SCA
rev. 2.2

Modem

Processor

INFOSEC

/0

Reference Standard

Figure 2-12. Hardware Architecture Framework

The HWModule(s) class inherits the system level attributes from the SCA-Compliant Hardware
class. Classes below the HWModule(s) class inherit the attributes of that class. The attributes
are the parameters that define domain-neutral hardware devices, and the values assigned to the
attributes satisfy requirements for a selected implementation. The hardware devices, which are
the physical implementation of these classes, will have values for the relevant attributes based on
aplatform’s physical requirements and the procurement performance requirements. Some
attributes are used in the creation of waveform applications and provided in a Device Profile,

readable by CF applications.

The Chassis Class has unique physical, interface, platform power, and external environment
attributes that are not shared with the modules in the chassis. Software Architecture Definition

2-17

3 OPERATING ENVIRONMENT.

This section contains the requirements of the operating system, middieware, and the CF

interfaces and operations that comprise the OE.

3.1.1 Operating System.

MSRC-5000SCA

rev. 2.2 |

The processing environment and the functions performed in the architecture impose differing
constraints on the architecture. An SCA application environment profile (AEP) is defined to
support portability of waveforms, scalability of the architecture, and commercial viability.
POSIX specifications are used as a basis for this profile. The notional relationship of the OE and
applications to the SCA AEP isdepicted in figure 3-1. The OS shall provide the functions and
options designated as mandatory by the AEP defined in Appendix B. The OSis not limited to
providing the functions and options designated as mandatory by the profile. The CORBA Object
Request Broker (ORB), the CF Framework Control Interfaces, Framework Services Interfaces,
and hardware device drivers are not limited to using the services designated as mandatory by the

profile.

CORBA API

applications use CF for
all File access

Logical Device isan Adapter for
the HW-specific devices 7

applications Resourc
CF Base Application

az

)

Interfaces &
Core Framework:
Framework Control &
Framework Services Interfaces
CORBA ORB

OS access OS access OS access
limited to unlimited nlimited
SCA AEP unim

© ©

development).

OS (function) that supports SCA

(unlimited proprietary APIsfor system

/o

non-CORBA components
or
devicedrivers

(non-CORBA
components provide
access to hardware
devices/ functionality
not available on a
CORBA-capable
processor)

Any vendor-provided OW

function calls

Figure 3-1. Notional Relationship of OE and Application to the SCA AEP

M SRC-5000SCA
rev. 2.2

The OS and related file systems shall support at a minimum afile name length of 40 characters
and at a minimum a combined pathname/filename length of 1024 characters.

Applications are limited to using the OS services that are designated as mandatory for the profile.
Applications will perform file access through the CF. (Application requirements are covered in
section 3.2.)

3.1.2 Middleware & Services.

3.1.2.1 CORBA.

The OE shall use middleware that, at a minimum, provides the services and capabilities of
mMinimumCORBA as specified by the OMG Document orbos/98-05-13, May 19, 1998.

3.1.2.2 CORBA Extensions.
The following extensions and/or services above and beyond minimumCORBA are allowed.

3.1.2.2.1 Naming Service.

A CORBA Naming Service shall be provided in the OE. A CORBA Naming Service supplied by
an OE shall support the CosNaming CORBA module and its NamingContext interface’s
operations: bind, bind_new_context, unbind, destroy, and resolve. These operations shall meet
the requirements of OMG Document formal/00-11/01: Interoperable Naming Service
Specification.

A Naming Service's NameComponent structure is made up of an id-and-kind pair. The “id”
element of each NameComponent is a string value that uniquely identifies a NameComponent.
The “kind” element of each NameComponent shall be “” (null string).

3.1.2.3 Log Service.
3.1.2.3.1 Useof Log Service.

This section describes the requirements for components that produce log records. A log
producer is a CF component (e.g., DomainManger, Application, ApplicationFactory,
DeviceManager, Device) or an application’s CORBA capable component (e.g., Resource,
ResourceFactory) that produces log records. (A component that calls the writeRecords operation
of the Log interface.)

A standard record type is defined for all log producers to use when writing log records. The log
producer may be configured viathe PropertySet interface to output only specific log levels.

Log producers shall implement a configure property with an ID of
“PRODUCER LOG LEVEL”. The PRODUCER LOG_LEVEL configure property provides
the ability to “filter” the log message output of alog producer. The type of this property shall be
aLogLevel Sequence. The configure property LoglLevel Sequence will contain all log levels that
are enabled. Only the messages that contain an enabled log level shall be sent by alog producer
toalog. Loglevelsthat are not in the LogL evel Sequence are disabled.

Log producers shall use their component identifier in the producerld field of the
ProducerL ogRecord.

Log producers shall operate normally in the case where the connectionsto alLog are nil or an
invalid reference.

3-2

MSRC-5000SCA
rev. 2.2 |

Log producers shall output only those log records that correspond to enabled LogLevel Type
values.

3.1.2.3.2 LogService Module. |

The LogService module contains the Log servant interface and the types necessary for alog
producer to generate standard SCA log records. This module also defines the types necessary to
control the logging output of alog producer. Components that produce logs are required to
implement configure properties that allow the component to be configured as to what log records
it will output.

An SCA Log Service, as specified in this section, may be provided in a JTRS installation.

The optional aspect of the LogService isrestricted to its implementation and deployment. A CF
provider may deliver an SCA conformant product without a LogService implementation. A
JTRS installation (e.g., a handheld platform with limited resources) may choose not to deploy a
LogService as part of its domain. Several CF components contain requirements to write log
records using the LogService. CF components that are required to write log records are also
required to account for the absence of alog service and otherwise operate normally.

312321 Types.
3123211 LogLevelType.
Type LogLevel Typeisan enumeration that is utilized to identify log levels.

enum LogLevel Type {SECURI TY_ALARM
FAl LURE_ALARM
DEGRADED_ALARM
EXCEPTI ON_ERROR
FLOW CONTROL_ERROR
RANGE_ERROR
USAGE_ERROR

ADM NI STRATI VE_EVENT
STATI STI C_REPORT
PROGRAMVER _DEBUGL
PROGRAMVER _DEBUG2
PROGRAMVER _DEBUG3
PROGRAMVER _DEBUG4
PROGRAMVER _DEBUGS
PROGRAMVER _DEBUGS
PROGRAMVER _DEBUGY
PROGRAMVER _DEBUGS
PROGRAMVER _DEBU®?
PROGRAMVER _DEBUGL0
PROGRAMVER _DEBUGL 1
PROGRAMVER _DEBUGL 2
PROGRAMVER _DEBUGL 3
PROGRAMVER _DEBUGL4
PROGRAMVER _DEBUGL5
PROGRAMVER _DEBUGL 6

3.1.2.3.2.1.2 ProducerLogRecordType.
Log producers format log records as defined in the structure ProducerLogRecordType.

3-3

M SRC-5000SCA
rev. 2.2

struct ProducerLogRecordType {

string producer |l d;
string pr oducer Naneg;
LogLevel Type | evel ;

string | ogDat a;

}s

producerld: Thisfield uniquely identifies the source of alog record. Thevaueisthe
component’sidentifier and is unique for each SCA Resource and Core Framework component
within the Domain.

producerName: Thisfield identifies the producer of alog record in textual format. Thisfieldis
assigned by the log producer, thusis not unique within the Domain (e.g. multiple instances of an
application will assign the same name to the ProducerName field.)

level: Thelevel field can be used to classify the log record according to the LogL evel Type.
logData: Thisfield contains the informational message being logged.

3.1.2.3.2.1.3 LogLevel Sequence.

The LogL evel Sequence type is an unbounded sequence of LogLevel Types. The
PRODUCER _LOG_LEVEL configure/query property is of the LogL evel Sequence type.

t ypedef sequence <LoglLevel Type> LoglLevel Sequence;

3.1.2.3.3 Log.
3.1.2.3.3.1 Description.

A Log is utilized by CF and CORBA capabl e application components to store informational
messages. These informational messages are referred to as ‘log records' in this document. The
interface provides operations for writing log records to a Log, retrieving LogRecords from a Log,
controlling of aLog, and getting the status of a Log.

3-4

MSRC-5000SCA
rev. 2.2 |

3.1.23.3.2 UML.

<<Interface>>
Log

®getMaxSize() : unsigned long long

¥setMaxSize(size : in unsigned long long) : void

getCurrentSize() : unsigned long long

#getNumRecords() : unsigned long long

¥getLogFullAction() : LogFullActionType

®setLogFullAction(action : in LogFullActionType) : woid
FgetAvailabilityStatus() : AvailabilityStatusType
®getAdministrativeState() : AdministrativeStateType
¥setAdministrativeState(state : in AdministrativeStateType) : woid
®getOperationalState() : OperationalStateType
writeRecords(records : in ProducerLogRecordSequence) : void
¥getRecordidFromTime(fromTime : in LogTimeType) : RecordldType
®retrieveByld(currentld : inout RecordldType, howMany : in unsigned long) : LogRecordSequence
clearLog() : woid

®destroy() : void

uses
V
<<CORBAStruct>>
ProducerLogRecordType

<zproducerld : string
<zproducerName : string
«level : LogLevelType
«logData : string

Figure3-2. Log UML.

3.1.2.3.3.3 Types.
3.1.2.3.3.3.1 InvalidParam Exception.
The InvalidParam exception indicates that a provided parameter was invalid.

exception InvalidParam {string detail s};

3.1.2.3.3.3.2 This paragraph intentionally left blank.

3.1.2.3.3.3.3 LogTimeType.

This type provides the time format used by the Log to time stamp LogRecords. Eachfieldis
intended to directly map to the POSIX timespec structure as follows:

struct LogTi neType {
| ong seconds; /1 maps to PCSI X tine_t type

3-5

M SRC-5000SCA
rev. 2.2

| ong nanoseconds;
i
3.1.2.3.3.3.4 Operational StateType.

The enumeration Operational StateType defines the Log states of operation. Whenthe Logis
ENABLED it isfully functional and is available for use by log producer and log consumer
clients. A Logthat is DISABLED has encountered aruntime problem and is not available for
use by log producers or log consumers. The internal error conditions that cause the Log to set
the operational state to ENABLED or DISABLED are implementation specific.

enum Qper ati onal St at eType { DI SABLED, ENABLED}

3.1.2.3.3.35 AdministrativeStateType.

The AdministrativeStateType denotes the active logging state of an operational Log. When set
to UNLOCKED the Log will accept records for storage, per its operational parameters. When
set to LOCKED the Log will not accept new log records and records can be read or deleted only.

enum Adni ni strativeStateType {LOCKED, UNLOCKED}

3.1.2.3.3.3.6 AvailabilityStatusType.

AvailabilityStatusType denotes whether or not the Log is available for use. When true, offDuty
indicates the Log is LOCKED (administrative state) or DISABLED (operational state). When
true, logFull indicates the Log storage is full.

struct AvailabilityStatusType{
bool ean of f Duty;
bool ean | ogFul |

3.1.2.3.3.3.7 LogFullActionType.

Thistype specifies the action that the Log should take when itsinternal buffers become full of
data, leaving no room for new records to be written. Wrap indicates that the Log will overwrite
the oldest LogRecords with the newest records, as they are written to the Log. Halt indicates that
the Log will stop logging when full.

enum LogFul | Acti onType (WRAP, HALT);

3.1.2.3.3.3.8 RecordIDType.
This type provides the record ID that is assigned to a LogRecord.
t ypedef unsigned | ong | ong Recordl DType;

3.1.2.3.3.3.9 LogRecordType.
The LogRecordType defines the format of the LogRecords as stored in the Log. The ‘info’ field
is the ProducerLogRecord that is written by a client to the Log.

struct LogRecordType {
Recor dl DType i d;
LogTi neType ti ne;

MSRC-5000SCA
rev. 2.2 |

Producer LogRecor dType i nf o;
i

3.1.2.3.3.3.10 LogRecordSequence.
The LogRecordSequence type defines an unbounded sequence of LogRecords.

t ypedef sequence<LogRecordType> LogRecordSequence;

3.1.2.3.3.3.11 ProducerLogRecordSequence Type.
The ProducerL ogRecordSequence type defines a sequence of ProducerLogRecordTypes.

t ypedef sequence <ProducerLogRecordType> Producer LogRecor dSequence

3.1.2.3.3.4 Attributes.
N/A.

3.1.2.3.3.5 Operations.

3.1.23.351 getMaxSze.

3.1.233511 Brief Rationale.

This operation sets the maximum number of bytes that the Log can store.

3.1.23351.2 Synopsis.
unsi gned | ong | ong get MaxSi ze();

31233513 Behavior.
The getMaxS ze operation returns the maximum size of the Log measured in number of bytes.

3.1.233514 Returns.

The getMaxS ze operation shall return the integer number of bytes that the Log is capable of
storing.

31233515 ExceptiondErrors.
This operation does not raise any exceptions.

3123352 setMaxSze.
31233521 Brief Rationae.
This operation sets the maximum number of bytes that the Log can store.

3.1.233522 Synopsis.
voi d set MaxSi ze(i n unsigned long | ong size) raises (InvalidParanm;

31233523 Behavior.
The setMaxS ze operation shall set the maximum size of the log measured in number of bytes.

31233524 Returns.
This operation does not return a value.

M SRC-5000SCA
rev. 2.2

3.1.233525 ExceptiongErrors.

The setMaxS ze operation shall raise the InvalidParam exception if the size parameter passed in
isless than the current size of the Log.

The setMaxS ze operation shall raise the InvalidParam exception if the input size parameter is
greater than the storage space available to the Log.

3.1.2.3.35.3 getCurrentSze.
3.1.2.33531 Brief Rationale.
The getCurrentSze operation provides the current size of the log storage in bytes.

31233532 Synopss.
unsi gned long |long getCurrentSize ();

31233533 Behavior.
The getCurrentS ze operation returns the current size of the log storage in bytes.

3.1.23.3534 Returns.

The getCurrentSze operation shall return the current size of the log storage in bytes. (i.e. if the
log contains no records, getCurrentSze will return avalue of O (zero).)

31233535 ExceptiongErrors.
This operation does not return any exceptions.

3.1.2.3.354 getNumRecords.
3.1.2.3354.1 Brief Rationale.
The getNumRecor ds operation provides the number of records present in the Log.

3.1.23354.2 Synopsis.
unsi gned | ong | ong get NumRecords ();

31233543 Behavior.
The getNumRecor ds operation returns the current number of records contained in the Log.

3.1.23.3544 Returns.

The getNumRecor ds operation shall return the current number of LogRecords containedin the
Log.

31233545 ExceptiongdErrors.
This operation does not raise any exceptions.

3.1.2.3.35.5 getLogFullAction.
31233551 Brief Rationae.
The getLogFull Action operation provides the action taken when the Log becomes full.

3.1.2.3355.2 Synopsis.
LogFul | Acti onType get LogFul | Action();

MSRC-5000SCA
rev. 2.2 |

3.1.2.3.3553 Behavior.

The getLogFull Action operation returns the action that will be taken when the maximum size of
the Log has been reached.

31233554 Returns.
The getLogFull Action operation shall return the Log’ s log full action setting.

3.1.23.3555 ExceptiongErrors.
This operation does not return any exceptions.

3.1.2.3.35.6 setLogFullAction.
3.1.2.3.35.6.1 Brief Rationale.

The setLogFull Action operation provides the mechanism to configure the action taken by aLog
when it becomes full.

3.1.2.3356.2 Synopsis.
voi d setLogFul | Action(in LogFull Acti onType acti on)

31233563 Behavior.

The setLogFull Action operation shall set the action taken by a Log, when its maximum size has
been reached, to the value specified in the action parameter. The valid values for the action
parameter, WRAP and HALT, are described by LogFullActionType in 3.1.2.3.3.3.7.

31233564 Returns.
This operation does not return avalue.

3.1.23.356.5 ExceptiongErrors.
This operation does not return any exceptions.

3.1.2.3.35.7 getAvailabilitySatus.
3.1.2.335.7.1 Brief Rationale.
The getAvailabilityStatus operation is used to read the avail ability status of the Log.

3.1.23.357.2 Synopss.
Avail abilityStatusType getAvailabilityStatus ();

3.1.2335.7.3 Behavior.

The getAvailabilityStatus operation returns a structure that reflects the availability status of the
Log. Seethe description of the AvailabilityStatusTypein 3.1.2.3.3.3.6.

31233574 Returns.

The getAvailabilityStatus operation shall return the current availability status of the Log.
3.1.2.33575 ExceptiongErrors.

This operation does not raise any exceptions.

3.1.2.3.35.8 getAdministrativeSate.
31233581 Brief Rationae.
The getAdministrativeState is used to read the administrative state of the Log.

39

M SRC-5000SCA
rev. 2.2

3.1.2.3358.2 Synopsis.
Admi ni strativeStateType get Adm nistrativeState();

31233583 Behavior.

The getAdministrativeState operation returns the administrative state of the Log. Seethe
description of the AdministrativeStateTypein 3.1.2.3.3.3.5.

31233584 Returns.

The getAdministrativeState operation shall return the current administrative state of the Log.
3.1.2.33585 ExceptiongErrors.

This operation does not raise any exceptions.

3.1.2.3.35.9 setAdministrativeState.
3.1.2.3359.1 Brief Rationale.
The setAdministrativeState operation provides write access to the administrative state value.

3.1.23359.2 Synopsis.

voi d set Adm ni strativeState(in Admi nistrativeStateType state);

31233593 Behavior.
The setAdministrativeState operation shall set the administrative state of the Log.

31233594 Returns.

This operation does not return avalue.
3.1.2.33595 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.2.3.3.5.10 getOperational Sate.
3.1.2.3.35.10.1 Brief Rationale.
The getOperational Sate operation returns the operationa state of the Log.

3.1.2.3.35.10.2 Synopsis.
Oper ational St at eType get Operational State();

3.1.2.3.35.10.3 Behavior.

The getOperational Sate operation returns the operational state of the Log. See the description
of Operational StateTypein 3.1.2.3.3.3.4.

3.1.2.3.35104 Returns.
The getOperational Sate operation shall return the current operational state of the Log.

3.1.2.3.35.10.5 ExceptiongErrors.
This operation does not raise any exceptions.

3-10

MSRC-5000SCA
rev. 2.2 |

3.1.2.3.3.5.11 writeRecords.
3.1.2.33511.1 Brief Rationale.

The writeRecords operation provides the method for writing log records to the Log. The
operation is defined as one-way to minimize client overhead while writing to the Log.

3.1.2.335.112 Synopss.

oneway void witeRecords(in ProducerlLogRecordSequence records);

312335113 Behavior.

The writeRecords operation shall add each log record supplied in the records parameter to the

Log. When there isinsufficient storage to add one of the supplied log records to the Log, and the }
LogFullAction is set to HALT, the writeRecords method shall set the availability status logFull
state to true (e.g., If 3 records are provided in the records parameter, and while trying to write the
second record to the log, the record will not fit, then the log is considered to be full. Therefore,

the second and third records will not be stored in the log but the first record would have been
successfully stored.).

The writeRecords operation shall write the current local time to the time field of each record
written to the Log. The writeRecords operation shall assign a unique record Id to theid field of
the LogRecord.

Log records accepted for storage by the writeRecords shall be available for retrieval in the order
received.

312335114 Returns.

This operation does not return avalue.

312335115 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.2.3.3.5.12 getRecordldFromTime.
3.1.2.3.35.12.1 Brief Rationae.

The getRecordldFromTime operation is used to get the record Id of the first record in the Log
with atime-stamp that is greater than or equal to the time specified in the parameter.

3.1.2.3.35.12.2 Synopsis.
Recor dl DType get Recordl dFronili me (in LogTi neType frontine);

3.1.2.3.35.12.3 Behavior.

The getRecordldFromTime operation returns the record Id of the first record in the Log with a
time stamp that is greater than, or equal to, the time specified in the fromTime parameter. If the
Log does not contain arecord that meets the criteria provided, then the RecordidType returned
shall correspond to the next record that will be recorded in the future. Inthisway, if this
“future” recordld is passed into the retrieveByld operation and empty record will be returned,
unless since that time records have been recorded. Note that if the time specified in the
fromTime parameter isin the future, there is no guarantee that the resulting records returned will
have atime stamp after the fromTime parameter if the returned recordld is subsequently used as
input to the retrieveByld operation.

3-11

M SRC-5000SCA
rev. 2.2

3.1.2.3.35.12.4 Returns.

The getRecordldFromTime operation returns the record Id of the first record in the log with a
time-stamp that is greater than, or equal to, the time specified in the fromTime parameter. If the
Log does not contain arecord that meets the criteria provided, then the RecordidType returned
shall correspond to the next record that will be recorded in the future. Inthisway, if this
“future” recordld is passed into the retrieveByld operation and empty record will be returned,
unless since that time records have been recorded..

3.1.2.3.35.125 ExceptionsgErrors.

This operation does not raise any exceptions.

3.1.2.3.3.5.13 retrieveByld.

3.1.2.3.35.13.1 Brief Rationae.

The retrieveByld operation is used to get a specified number of records from a Log.
3.1.2.3.35.13.2 Synopsis.

LogRecor dSequence retrieveByld (inout Recordl DType currentld, in unsigned
| ong howivany) ;

3.1.2.3.35.13.3 Behavior.

The retrieveByld operation returns alist of LogRecords that begins with the record specified by
the currentld parameter and contains less than or equal to the number of records specified in the
howMany parameter.

The retrieveByld operation shall set the inout parameter currentld to the LogRecord Id of the
record following the last record in the LogRecordSequence returned. If the record sequence
returned exhausts the log records, then the currentld parameter shall be set to the LogRecordld of
where the log will resume writing logs on the next write.

3.1.2.3.35.13.4 Returns.

The retrieveByld operation shall return a LogRecordSequence that begins with the record
specified by the currentld parameter. The number of records in the LogRecordSequence
returned by the retrieveByld operation shall be equal to the number of records specified by the
howMany parameter, or the number of records available if the number of records specified by
the howMany parameter cannot be met. |If the record specified by currentld does not exist, the
retrieveByld operation shall return an empty list of LogRecords and leave the currentld
unchanged. If the Log isempty, or has been exhausted, the retrieveByld operation shall return
an empty list of LogRecords and leave the currentld unchanged.

3.1.2.3.35.13.5 Exceptions/Errors.

This operation does not raise any exceptions.

3.1.2.3.3.5.14 clearLog.
3.1.2.3.35.14.1 Brief Rationale.
The clearLog operation provides the method for removing all of the LogRecords from the Log.

3.1.2.3.35.14.2 Synopsis.
void clearLog ();

3-12

MSRC-5000SCA
rev. 2.2 |

3.1.2.3.35.14.3 Behavior.

The clearLog operation shall delete all records from the Log. The clearLog operation shall set
the current size of the Log storage to zero. The clearLog operation shall set the current number
of recordsin the Log to zero. The clearLog operation shall set the logFull availability status
element to false.

312335144 Returns.

This operation does not return avalue.

3.1.2.3.35.145 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.2.3.3.5.15 destroy.
3.1.2.3.35.15.1 Brief Rationale.
The destroy operation provides a means by which an instantiated Log may be torn down.

3.1.2.3.35152 Synopsis.
voi d destroy ();

3.1.2.3.35.15.3 Behavior.

The destroy operation shall release al internal memory and/or storage alocated by the Log. The
destroy operation shall tear down the component (i.e., released from the CORBA environment).

3.1.2.3.35154 Returns.
This operation does not return avalue.

3.1.2.3.35.155 ExceptiongErrors.
This operation does not raise any exception.

3.1.2.4 CORBA Event Service and Standard Events.
3.1.2.4.1 CORBA Event Service.

A CORBA Event Service (e.g., OMG's Event Service) shall be provided inthe OE. The
CORBA Event Service decouples the communication between consumer and producer objects,
where consumer components are unaware of producer components, and vice versa. Consumer
components process event data that are produced by producer components. The CORBA Event
Service is based upon the Push Model approach where producers push events to consumer. The
CORBA Event Service shall support Push interfaces (PushConsumer and PushSupplier) of the
CosEventComm CORBA module as described in OMG Document formal/01-03-01: Event
Service, v1.1. The compilable IDL for the CosEventComm isin the OMG Document formal/01-
03-02: Event Service IDL, v1.1.

The CosEventComm CORBA Module is used by consumers for receiving events and by
producers for generating events. A component (e.g., Resource, DomainManager, etc.) that
consumes events shall implement the CosEventComm PushConsumer interface. A component
(e.0., Resource, Device, DomainManager, etc.) that produces events shall implement the
CosEventComm PushSupplier interface and use the CosEventComm PushConsumer interface
for generating the events. A producer component shall handle all cases, without raising any
exceptions outside of the producer component, due to the connections to a CosEventComm
PushConsumer being nil or an invalid reference. The CORBA Event Service will have the

3-13

M SRC-5000SCA
rev. 2.2

capability to create event channels. An event channel allows multiple suppliers to communicate
with multiple consumers asynchronously. An event channel is both a consumer and a producer of
events. For Example, event channels can be standard CORBA objects and communication with
anevent channel is accomplished using standard CORBA requests.

The OE provides two standard event channels: Incoming Domain Management and Outgoing
Domain Management. The Incoming Domain Management Channel name shall be
"IDM_Channel". The Outgoing Domain Management Channel name shall be "ODM_Channel".
The Incoming Domain Management event channel is used by components (e.g., Device state
change event) within the domain to generate events that are consumed by domain management
functions (e.g., ApplicationFactory, Application, DomainManager, etc.). The Outgoing Domain
Management Channel is used by domain clients (e.g., HCI) to receive events (e.g., additions or
removals fromthe domain) generated from domain management functions (e.g.,
ApplicationFactory, Application, DomainManager, etc.). Besides these two standard event
channels, the OE allows other event channels to beset up by application developers.

3.1.2.4.2 StandardEvent Module.

The StandardEvent module contains type definitions that will be used for passing events from
event producers to event consumers.

312421 Types.

3124211 StateChangeCategoryType.

Type StateChangeCategoryType is an enumeration that is utilized in the StateChangeEventType.
It isused to identify the category of state change that has occurred.

enum St at eChangeCat egoryType

{
ADM NI STRATI VE_STATE_EVENT,

OPERATI ONAL_STATE_EVENT,
USAGE_STATE_EVENT

1
3.1.24.2.1.2 StateChangeType.

Type StateChangeType is an enumeration that is utilized in the StateChangeEventType. It is used
to identify the specific states of the event source before and after the state change occurred.

enum St at eChangeType
{

LOCKED, /*Admi nistrative State Event */
UNL OCKED, /*Admi nistrative State Event */
SHUTTI NG_DOVN, /*Adnmi nistrative State Event */
ENABLED, [*Qperational State Event */

DI SABLED, /[*QOperational State Event */

| DLE, /*Usage State Event */

ACTI VE, /*Usage State Event */

BUSY /*Usage State Event */

3-14

MSRC-5000SCA
rev. 2.2 |

3.1.24.2.1.3 StateChangeEventType.

Type StateChangeEventType is a structure used to indicate that the state of the event source has
changed. The event producer will send this structure into an event channel on behalf of the event
source.

struct StateChangeEvent Type
{

string producer | d;

string sourcel d;

St at eChangeCat egoryType st at eChangeCat egory;
St at eChangeType st at eChangeFr om

St at eChangeType st at eChangeTo;

b

3.1.24.2.1.4 SourceCategoryType.

Type SourceCategoryType is an enumeration that is utilized in the
DomainManagementObjectAddedEvent Type and

DomainM anagementObjectRemovedEventType. It is used to identify the type of object that has
been added to or removed from the domain.

enum Sour ceCat egor yType

{
DEVI CE_MANAGER,

DEVI CE

APPL| CATI ON_FACTORY,
APPL| CATI ON

SERVI CE

b

3.1.2.4.2.1.5 DomainManagementObjectRemovedEventType.

Type DomainM anagementObjectRemovedEventType is a structure used to indicate that the
event source has been removed from the domain. The event producer will send this structure into
an event channel on behalf of the event source.

st ruct Donai nManagenent bj ect RenovedEvent Type

{

string producer| d;
string sour cel d;
string sour ceNane;
Sour ceCat egor yType sour ceCat egory;

}s

3.1.2.4.2.1.6 DomainManagementObjectAddedEventType.

Type DomainM anagementObjectAddedEventType is a structure used to indicate that the event
source has been added to the domain. The event producer will send this structure into an event
channel on behalf of the event source.

st ruct Donai nManagenent Obj ect AddedEvent Type
{

string producer| d;
string sour cel d;
string sour ceNane;
oj ect sourcel OR

3-15

M SRC-5000SCA
rev. 2.2

Sour ceCat egor yType sour ceCat egory;
i

3.1.3 Core Framework.

The CF specification includes a detailed description of the purpose of each interface, the purpose
of each supported operation within the interface, and interface class diagrams to support these
descriptions. The corresponding IDL for the CF can be found in Appendix C.

Figure 3-3 depicts the key elements of the CF and the IDL relationships between these elements.
A DomainManager component manages the software Applications, ApplicationFactories,
hardware devices (represented by software Devices) and DeviceManagers within the system. An
Application is atype of Resource and consists of one to many software Resources. Some of the
software Resources may directly control the system’sinternal hardware devices; these Resources
are logical Device, which implement the Device, LoadableDevice, or ExecutableDevice
interfaces. (For example, a ModemDevice may provide direct control of a modem hardware
device such as a Field Programmable Gate Array (FPGA) or an Application Specific Integrated
Circuit (ASIC). An1/ODevice may operate as adevice driver to provide external accessto the
system.) Other software Resources have no direct relationship with a hardware device, but
perform application services for the user. (For example, a NetworkResource may perform a
network layer function. A WaveformLinkResource may perform awaveform specific link layer
service.) Each Resource can potentially communicate with other Resources. Devices are
allocated to one or more hardware devices by the DomainManager based upon various factors
including the hardware devices that the DeviceManager knows about, the current availability of
hardware devices, the behavior rules of a Resource, and the loading requirements of the
Resource.

3-16

MSRC-5000SCA

rev. 2.2 |
Legend
Implemented as Implemented by
Core Application Services Non-Core Applications
Core Framework Interface Core Framework Interface
<<Interface>> <<Interface>> <<Interface>> <<Interface>> P«I me'fit’cys;t
Port PortSupplier LifeCycle TestableObject IEEETtY
4
inherits
<<Interface>> from
PropertySet
<<Interface>> uses <<Interface>>
ﬁ Resource [<--="--------1 ResourceFactory
<<Interface>>
Device Ralntelaeey <<interface>>
.. Application ft------------ ApplicationFactory
N M AR - 0 *
/ <<Interface>> \\\ \\ o~ S %// ¥ . . 0
- |LoadableDevicel . . G RN applicationFactori
v NN SR %,
\ N \\ N S
% <<Interface>> O\ -~
ZZinterface>> i RS
ExecuteableDevice AggregateDevice devices “~[| _ ssinterface>
N DomainManager
L *
<<Interface>> N 1.
DeviceManager \ [inteface>| deviceManagers
AN File
AY
\\ /I\
A

0] 1 !
P = <<Interface>>
eg,q FileSystem
> §
A s

1 Q
1
<l nterface>>
FileManager

Figure 3-3. Core Framework IDL Relationships

The Resour ces being managed by the DomainManager are CORBA objects implementing the
Resource interface. Some Resources may be dependent on other Resources. This interface
provides a consistent way of creating up and tearing down any Resour ce within the system.
These resources can be created by using a ResourceFactory interface or by the Device interfaces
(Device, LoadableDevice, or ExecutableDevice).

Thefile service interfaces (FileManager, FileSystem, and File) are used for installation and
removal of application files within the system, and for loading and unloading application files on
the various processors that the Devices execute upon.

3.1.3.1 BaseApplication Interfaces.

Base Application Interfaces are defined by the Core Framework requirements and implemented
by application developers; see 3.2 for Application requirements.

3-17

M SRC-5000SCA
rev. 2.2

3.1.3.1.1 Port.
3.1.3.1.1.1 Description.

This interface provides operations for managing associations between ports. The Port interface
UML isdepicted in Figure 3-4. An application defines a specific Port type by specifying an
interface that inherits the Port interface. An application establishes the operations for
transferring data and control. The application aso establishes the meaning of the data and
control values. Examples of how applications may use ports in different ways include: push or
pull, synchronous or asynchronous, mono- or bi-directional, or whether to use flow control (e.g.,
pause, start, stop).

The nature of Port fan-in, fan-out, or one-to-one is component dependent.

Note 1: The CORBA specification defines only a minimum size for each basic IDL type. The
actual size of the data type is dependent on the language (defined in the language mappings) as
well asthe Central Processing Unit (CPU) architecture used. By using these CORBA basic data

types, portability is maintained between components implemented in differing CPU architectures
and languages.

Note 2: How components ports are connected is described in the software assembly descriptor
(SAD) file of the Domain Profile (3.1.3.4).

313112 UML.

<<Interface>>
Port

SconnectPort(connection : in Object, connectionld : in string) : void
S4disconnectPort(connectionld : in string) : void

Figure 3-4. Port Interface UML

3.1.3.1.1.3 Types.
3131131 InvaidPort.

The InvalidPort exception indicates one of the following errors has occurred in the specification
of aPort association:

1. errorCode 1 means the Port component isinvalid (unable to narrow object reference)
or illegal object reference,

2. errorCode 2 means the Port name is not found (not used by this Port).

exception InvalidPort { unsigned short errorCode, string neg };

3.1.3.1.1.3.2 OccupiedPort.
The OccupiedPort exception indicates the Port is unable to accept any additional connections.
exception Cccupi edPort {};

3-18

MSRC-5000SCA
rev. 2.2 |

3.1.3.1.1.4 Attributes.

N/A.

3.1.3.1.1.5 Operations.
3.1.3.1.1.5.1 connectPort.
31311511 Brief Rationale.

Applications require the connectPort operation to establish associations between Ports. Ports
provide channels through which data and/or control pass.

The connectPort operation provides half of atwo-way association; therefore two calls are
required to create a two-way association.

3.131.151.2 Synopss.

voi d connectPort(in Object connection, in string connectionld) raises
(I'nvalidPort, CccupiedPort);

3.1.3.1.1513 Behavior.

The connectPort operation shall make a connection to the component identified by the input |
parameters.

A port may support several connections. Theinput connectionld is a unique identifier to be used |
by disconnectPort when breaking this specific connection.

31311514 Returns.
This operation does not return avalue.

31311515 ExceptiongErrors.

The connectPort operation shall raise the InvalidPort exception when the input connection
parameter is an invalid connection for this Port.

The connectPort operation shall raise the OccupiedPort exception when unable to accept the
connections because the Port is aready fully occupied.

3.1.3.1.1.5.2 disconnectPort.
31311521 Brief Rationde.

Applications require the disconnectPort operation in order to allow consumer/producer data
components to disassociate themselves from their counterparts (consumer/producer).

31311522 Synopsis.
voi d disconnectPort (in string connectionld) raises (InvalidPort); |

3.1.3.1.1523 Behavior.

The disconnectPort operation shall break the connection to the component identified by the input
parameter.

31311524 Returns.
This operation does not return avalue.

3-19

M SRC-5000SCA
rev. 2.2

31311525 ExceptiongErrors.

The disconnectPort operation shall raise the InvalidPort exception when the name passed to
disconnectPort is not connected with the Port component.

3.1.3.1.2 LifeCycle.

3.1.3.1.2.1 Description.

The LifeCycle interface defines the generic operations for initializing or releasing instantiated
component-specific data and/or processing elements. The LifeCycle interface UML is depicted
in Figure 3-5.

313122 UML.

<<Interface>>

LifeCycle

Finitialize() : void
®releaseObject() : void

<<CORBA Typedef>>
StringSequence

Figure 3-5. LifeCycleInterface UML

3.1.3.1.23 Types.
3.1.3.1.2.3.1 InitidizeError.

The InitializeError exception indicates an error occurred during component initialization. The
message is component-dependent, providing additional information describing the reason why
the error occurred.

exception InitializeError { StringSequence errorMssage; };

3.1.3.1.2.3.2 ReleaseError.

The ReleaseError exception indicates an error occurred during component releaseObject. The
message is component-dependent, providing additional information describing the reason why
the error occurred.

exception Rel easeError { StringSequence errorMessage; };

3.1.3.1.2.4 Attributes.
N/A.

3-20

MSRC-5000SCA
rev. 2.2 |

3.1.3.1.25 Operations.
3.1.3.1.251 initialize
31312511 Brief Rationale.

The purpose of the initialize operation isto provide a mechanism to set a component to a known
initial state. (For example, data structures may be set to initial values, memory may be allocated,
hardware devices may be configured to some state, etc.)

3.13.1.251.2 Synopss.

void initialize() raises (InitializeError);

31312513 Behavior.

Initialization behavior isimplementation dependent.
31312514 Returns.

This operation does not return avalue.

31312515 ExceptiongdErrors.

Theinitialize operation shall raise an InitializeError exception when an initialization error
ocCcurs.

3.1.3.1.25.2 releaseObject.

3.1.3.1.2521 Brief Rationale.

The purpose of the releaseObject operation isto provide a means by which an instantiated
component may be torn down.

31312522 Synopsis.
void rel easeCbject() raises (Rel easeError);

3.1.3.1.2523 Behavior.

The releaseObject operation shall release al internal memory allocated by the component during
the life of the component. The releaseObject operation shall tear down the component (i.e.
released from the CORBA environment). The releaseObject operation shall release components
from the OE.

31312524 Returns.

This operation does not return avalue.

31312525 ExceptiongErrors.

The releaseObject operation shall raise a ReleaseError exception when arelease error occurs.
3.1.3.1.3 TestableObject.

3.1.3.1.3.1 Description.

The TestableObject interface defines a set of operations that can be used to test component
implementations. The TestableObject interface UML is depicted in Figure 3-6.

321

M SRC-5000SCA
rev. 2.2

313132 UML.

<<Interface>>
TestableObject

®runTest(testid : in unsigned long, testValues : inout Properties) : wid

|
\/

<<CORBAEXxception>>
UnknownProperties

winvalidProperties : Properties

Figure 3-6. TestableObject Interface UML

3.1.3.1.3.3 Types.
3.1.3.1.3.3.1 UnknownTest.

The UnknownTest exception indicates the requested testld for atest to be performed is not
known by the component.

exception UnknownTest {};

3.1.3.1.3.4 Attributes.
N/A.

3.1.3.1.3.5 Operations.
3.1.3.1.35.1 runTest.
31313511 Brief Rationale.

The runTest operation allows components to be “blackbox” tested. This allows Built-In Test
(BIT) to be implemented and this provides a means to isolate faults (both software and hardware)
within the system.

3.1.3.1351.2 Synopsis.

void runTest (in unsigned long testld, inout Properties testValues)raises
(UnknownTest, UnknownProperties);

3.1.3.1.3513 Behavior.

The runTest operation shall use the testld parameter to determine which of its predefined test
implementations should be performed. The testVaues parameter CF Properties (id/value pair(s))
shall be used to provide additional information to the implementation-specific test to be run. The
runTest operation shall return the result(s) of the test in the testV alues parameter.

3-22

MSRC-5000SCA
rev. 2.2 |

Tests to be implemented by a component are component-dependent and are specified in the
component’s Properties Descriptor. Valid testld(s) and both input and output testV alues |
(properties) for the runTest operation shall at a minimum be test properties defined in the
properties test element of the component's Properties Descriptor (refer to Appendix D Domain
Profile). Thetestid parameter corresponds to the XML attribute testld of the property element |
test in a propertyfile.

A CF UnknownProperties exception is raised by the runTest operation. All inputValues |
properties shall be validated (i.e., test properties defined in the propertyfile(s) referenced in the
component’s SPD).

The runTest operation shall not execute any testing when the input testld or any of the input |
testValues are not known by the component or are out of range.

3.1.3.13514 Returns.

This operation does not return avalue.

31313515 ExceptiongdErrors.
The runTest operation shall raise the UnknownTest exception when there is no underlying test
implementation that is associated with the input testld given.

The runTest operation shall raise the UnknownProperties exception when the input parameter
testValues contains any DataTypes that are not known by the component’ s test implementation
or any values that are out of range for the requested test. The exception parameter
invalidProperties shall contain the invalid inputValues propertiesid(s) that are not known by the
component or the value(s) are out of range.

3.1.3.1.4 PortSupplier.

3.1.3.1.4.1 Description.

This interface provides the getPort operation for those components that provide ports.
3.1.3.142 UML.

<<Interface>>
PortSupplier

FgetPort(name : in string) : Object

Figure 3-7. PortSupplier Interface UML

3.1.3.1.4.3 Types.
3.1.3.1.4.3.1 UnknownPort.
The UnknownPort exception israised if an undefined port is requested.

exception UnknownPort { };

3.1.3.1.4.4 Attributes.
N/A.

3-23

M SRC-5000SCA
rev. 2.2

3.1.3.1.45 Operations.
3.1.3.1.451 getPort.
31314511 Brief Rationae.

The getPort operation provides a mechanism to obtain a specific consumer or producer Port. A
PortSupplier may contain zero-to-many consumer and producer port components. The exact
number is specified in the component’s Software Profile SCD (section 3.1.3.4). Multiple input
and/or output ports provide flexibility for PortSuppliers that must manage varying priority levels
and categories of incoming and outgoing messages, provide multi-threaded message handling, or
other special message processing.

31314512 Synopsis.

hj ect getPort(in string nane) raises (UnknownPort);

31314513 Behavior.

The getPort operation returns the object reference to the named port as stated in the component's
SCD.

31314514 Returns.

The getPort operation shall return the CORBA object reference that is associated with the input
port name.

31314515 ExceptiongErrors.

The getPort operation shall raise an UnknownPort exception if the port name isinvalid.

3.1.3.1.5 PropertySet.
3.1.3.1.5.1 Description.

The PropertySet interface defines configure and query operations to access component
properties/attributes. The PropertySet interface UML is depicted in Figure 3-8.

3-24

MSRC-5000SCA
rev. 2.2 |

313152 UML.

<<Interface>>
PropertySet

®configure(configP roperties : in Propetties) : wid
®query(configProperties : inout Properties) : wid

/ AN
L A\
<<CORBAEXxception>> <<CORBATypedef>>
UnknownProperties Properties

wzinvalidProperties : Properties

Figure 3-8. PropertySet Interface UML

3.1.3.1.5.3 Types.
N/A.

3.1.3.1.5.3.1 InvalidConfiguration.

The InvalidConfiguration exception indicates the configuration of a component has failed (no
configuration at all was done). The message is component-dependent, providing additional
information describing the reason why the error occurred. The invalidProperties returned
indicate the properties that were invalid.

exception InvalidConfiguration { string nmsg; Properties invalidProperties};

3.1.3.1.5.3.2 PartiaConfiguration.

The Partial Configuration exception indicates the configuration of a Component was partially
successful. The invalidProperties returned indicate the properties that were invalid.

exception Partial Configuration { Properties invalidProperties};

3.1.3.1.5.4 Attributes.

N/A.

3.1.3.1.55 Operations.
3.1.3.1.55.1 configure.
31315511 Brief Rationae.

The configure operation allows id/value pair configuration properties to be assigned to
components implementing this interface.

3-25

M SRC-5000SCA
rev. 2.2

3.1.3.1551.2 Synopsis.

void configure(in Properties configProperties) raises (InvalidConfiguration,
Parti al Confi guration);

31315513 Behavior.

The configure operation shall assign values to the properties as indicated in the configProperties
argument. Valid properties for the configure operation shall at a minimum be the configure
readwrite and writeonly properties referenced in the component’s SPD.

31315514 Returns.

This operation does not return avalue.

3.1.3.15515 ExceptiongErrors.
The configure operation shall raise a Partial Configuration exception when some configuration
properties were successfully set and some configuration properties were not successfully set.

The configure operation shall raise an InvalidConfiguration exception when a configuration error
occurs that prevents any property configuration on the component.

3.1.3.1.552 query.

3.1.3.15521 Brief Rationale.

The query operation allows a component to be queried to retrieve its properties.

3.1.3.15522 Synopsis.
voi d query(inout Properties configProperties) raises (UnknownProperties);

31315523 Behavior.

If the configProperties are zero size then, the query operation shall return al component
properties. If the configProperties are not zero size, then the query operation shall return only
those id/value pairs specified in the configProperties. Valid properties for the query operation
shall at aminimum be the configure, readwrite, and readonly properties, and allocation
properties that have an action value of “external” as referenced in the component’s SPD.
31315524 Returns.

This operation does not return avalue.

3.1.3.15525 ExceptiongErrors.

The query operation shall raise the CF UnknownProperties exception when one or more
properties being requested are not known by the component.

3.1.3.1.6 Resource.
3.1.3.1.6.1 Description.

The Resource interface provides a common API for the control and configuration of a software
component. The Resource interface UML is depicted in Figure 3-9.

The Resource interface inherits from the LifeCycle, PropertySet, TestableObject, and
PortSupplier interfaces.

The inherited LifeCycle, PropertySet, TestableObject, and PortSupplier interface operations are
documented in their respective sections of this document.

3-26

MSRC-5000SCA
rev. 2.2 |

The Resource interface may also be inherited by other application interfaces as described in the
Software Profile's Software Component Descriptor (SCD) file (see 3.1.3.4).

313162 UML.

<<Interface>> <<Interface>>
<<Interface>> LifeCycle PropertySet <<Interface>>
PortSupplier TestableObject
Finitialize() Sconfigure()
SgetPort() SreleaseObject() Squery() SrunTest()
inherits
from

<<Interface>>
Resource

waidentifier : string

¥start() : void
stop() : wid

\%
<<CORBAEnum>>
ErrorNumberType

Figure 3-9. Resourcelnterface UML

3.1.3.1.6.3 Types.
3.1.3.1.6.3.1 UnknownPort.
The UnknownPort exception israised if an undefined port is requested.

exception UnknownPort{};

3.1.3.1.6.3.2 StartError.

The StartError exception indicates that an error occurred during an attempt to start the Resource.
The error number shall indicate an ErrorNumber Type value (e.g., EDOM, EPERM, ERANGE). |

3-27

M SRC-5000SCA
rev. 2.2

The message is component-dependent, providing additional information describing the reason
for the error.

exception StartError { ErrorNunber Type errorNunber; string nsg };

3.1.3.1.6.3.3 StopError.

The StopError exception indicates that an error occurred during an attempt to stop the Resource.
The error number shall indicate an ErrorNumberType value (e.g., ECANCELED, EFAULT,
EINPROGRESS). The message is component-dependent, providing additional information
describing the reason for the error.

exception StopError { ErrorNunber Type errorNunmber; string nmsg };

3.1.3.1.6.4 Attributes.

3.13.1.6.4.1 identifier.
The readonly identifier attribute shall contain the unique identifier for aresource instance.

readonly attribute string identifier;

3.1.3.1.6.5 Operations.

3.1.3.1.65.1 stop.

31316511 Brief Rationae.

The stop operation is provided to command a Resour ce implementing this interface to stop
internal processing.

3.1.3.1651.2 Synopsis.
void stop()raises (StopError);

3.1.3.16513 Behavior.

The stop operation shall disable al current operations and put the Resource in a non-operating
condition. Subsequent configure, query, and start operations are not inhibited by the stop
operation.

3.13.1.6.514 Returns.

This operation does not return avalue.

31316515 ExceptiongErrors.

The stop operation shall raise the StopError exception if an error occurs while stopping the
resource.

3131652 dart.

31316521 Brief Rationae.

The start operation is provided to command a Resour ce implementing this interface to start
internal processing.

3.1.3.1.65.22 Synopss.
void start()raises (StartError);

3-28

MSRC-5000SCA
rev. 2.2 |

3.1.3.16523 Behavior.
The start operation puts the Resource in an operating condition.

31316524 Returns.
This operation does not return avalue.

3.1.3.1.6.525 ExceptiongErrors.

The start operation shall raise the StartError exception if an error occurs while starting the
resource.

3.1.3.1.7 ResourceFactory. |
3.1.3.1.7.1 Description.

A ResourceFactory is used to create and tear down a Resource. The ResourceFactory interface
is designed after the Factory Design Patterns. The ResourceFactory interface UML is depicted
in Figure 3-10. The factory mechanism provides client-server isolation among Resources (e.g.,
Network, Link, Modem, I/O, etc.) and provides an industry standard mechanism of obtaining a
Resource without knowing itsidentity. An application is not required to use ResourceFactories
to obtain, create, or tear down resources. A Software Profile will determine which application
ResourceFactories are to be used by the ApplicationFactory.

313172 UML.

<<Interface>>
ResourceFactory

«zidentifier : string

W®createResource(resourceld : in string, qualifiers : in Properties) : Resource
WreleaseResource(resourceld : in string) : void
®shutdown() : void

/ | .
4 N
<<CORBATypedef>> <<CORBAEnum>> <<Interface>>
Properties ErrorNumberType Resource

Figure 3-10. ResourceFactory Interface UML

3.1.3.1.7.3 Types.

3.1.3.1.7.3.1 InvaidResourceld.
The InvalidResourceld exception indicates the resourceld does not exist in the Factory.

exception InvalidResourceld {};

3-29

M SRC-5000SCA
rev. 2.2

3.1.3.1.7.3.2 ShutdownFailure.

The ShutdownFailure exception indicates that the shutdown method failed to release the
Resour ceFactory from the CORBA environment due to the fact the Factory still contains
Resources. The message is component-dependent, providing additional information describing
why the shutdown failed.

excepti on ShutdownFailure{ string nmsg };

3.1.3.1.7.3.3 CreateResourceFailure.

The CreateResourceFailure exception indicates that the createResour ce operation failed to create
the Resource. The error number shall indicate an ErrorNumberType value (e.g., NOTSET,
EBADMSG, EINVAL, EMSGSIZE, ENOMEM). The message is component-dependent,
providing additional information describing the reason for the error.

exception CreateResourceFail ure{ ErrorNunmberType errorNunber; string nsg; };

3.1.3.1.7.4 Attributes.
N/A.

3.1.3.1.7.5 Operations.
3.1.3.1.7.5.1 createResource.
31317511 Brief Rationae.

The createResour ce operation provides the capability to create Resources in the same process
space as the Resour ceFactory or to return a Resource that has already been created. This
behavior is an aternative approach to the Device' s execute operation for creating a Resource.

3.13.1.751.2 Synopss.

The resourceNumber is the identifier for Resource. The qualifiers are parameter values used by
the ResourceFactory in creation of the Resource. The ApplicationFactory can determine the
values to be supplied for the qualifiers from the description in the Resour ceFactory’ s Software
Profile. The qualifiers may be used to identify, for example, specific subtypes of Resources

created by a ResourceFactory.Resour ce creat eResource(in string resourceld, in
Properties qualifiers) raises (CreateResourceFailure);

31317513 Behavior.

Theresourceld is the identifier for Resource. The qualifiers are parameter values used by the
ResourceFactory in creation of the Resource. The ApplicationFactory can determine the values
to be supplied for the qualifiers from the description in the ResourceFactory’ s Software Profile.
The qualifiers may be used to identify, for example, specific subtypes of Resources created by a
ResourceFactory.If no Resource exists for the given resourceld, the createResource operation
shall create a Resource. If the Resource already exists, the Resource's reference isreturned. The
createResour ce operation shall assign the given resourceld to a new Resource and either set a
reference count to one, when the Resourceisinitially created, or increment the reference count
by one, when the Resource already exists. The reference count is used to indicate the number of
times that a specific Resour ce reference has been given to requesting clients. This ensures that
the Resour ceFactory does not release a Resour ce that has a reference count greater than 0.
When multiple clients have obtained areference to the same Resource, each client will request

3-30

MSRC-5000SCA
rev. 2.2 |

release of the Resource when through with the Resource. However, the Resource must not be
released until the release request comes from the last client in existence
31317514 Returns.

The createResour ce operation shall return areference to the created Resource or the existing
Resource. The createResource operation shall return anil CORBA component reference when
the operation is unable to create or find the Resource.

The createResour ce operation shall return areference to the created Resource or the existing
Resource. The createResource operation shall return anil CORBA component reference when
the operation is unable to create the Resource.

3.1.3.1.7515 ExceptiongErrors.

The createResour ce operation shall raise the CreateResour ceFailure exception when it cannot
create the Resource.

3.1.3.1.75.2 releaseResource.

3.1.3.1.7521 Brief Rationale.

In CORBA thereis client side and server side representation of a Resource. The

rel easeResour ce operation provides the mechanism of releasing the Resource in the CORBA
environment on the server side when all clients are through with a specific Resource. The client
still has to release its client side reference of the Resource.

31317522 Synopsis.

voi d rel easeResource(in string resourceld) raises {lnvalidResourceld); |

31317523 Behavior.

The releaseResour ce operation shall decrement the reference count for the specified resource, as
indicated by the resourceld. The releaseResource operation shall make the Resource no longer
available (i.e, it isreleased from the CORBA environment) when the Resource' s reference count
IS zero.

3.131.7524 Returns.

This operation does not return avalue.

3.1.3.1.7525 ExceptiongErrors.

The releaseResour ce operation shall raise the InvalidResourceld exception if an invalid
resourceld is received.

3.1.3.1.7.5.3 shutdown.

31317531 Brief Rationae.

In CORBA thereis client side and server side representation of a ResourceFactory. The
shutdown operation provides the mechanism for releasing the ResourceFactory from the
CORBA environment on the server side. The client has the responsibility to release its client
side reference of the ResourceFactory.

31317532 Synopsis.
voi d shutdown()rai ses {ShutdownFail ure);

3-31

M SRC-5000SCA
rev. 2.2

31317533 Behavior.

The shutdown operation shall result in the ResourceFactory being unavailable to any subsequent
callstoits object reference (i.e. it isreleased from the CORBA environment).

31317534 Returns.

This operation does not return avalue.

3.131.7535 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.3.2 Framework Control Interfaces.

Framework control within a Domain is accomplished by Domain Management, Device, and
Device Management interfaces.

The Domain Management interfaces are Application, ApplicationFactory, and DomainManager .
These interfaces manage the registration and unregistration of applications, devices, and device
managers within the domain and the controlling of applications within the domain. The
implementation of the Application, ApplicationFactory, and DomainManager interfaces are
coupled together and must be delivered together as a complete domain management
implementation and service.

The device interfaces are for the implementation and management of logical Devices within the
domain. The devices within the domain can be simple devices with no |loadable, executable, or
aggregate device behavior, or devices with a combination of these behaviors. The device
interfaces are Device, LoadableDevice, ExecutableDevice, and AggregateDevice.

Device management is accomplished by the DeviceManager interface. The DeviceManager is
responsible for creation of logical Devices and launching service applications on these logical
Devices.

Framework Control Interfaces shall be implemented using the CF IDL presented in Appendix C.

3.1.3.2.1 Application.

3.1.3.21.1 Description.

The Application class provides the interface for the control, configuration, and status of an
instantiated application in the domain.

The Application interface classinherits the IDL interface of Resource. A created application
instance may contain Resource components and/or non-CORBA components. The Application
interface UML isdepicted in Figure 3-11.

The Application interface releaseObject operation provides the interface to release the
computing resources allocated during the instantiation of the Application, and de-allocate the
devices associated with Application instance.

An instance of an Application is returned by the create operation of an instance of the
ApplicationFactory class.

3-32

MSRC-5000SCA
rev. 2.2 |

313212 UML.

<<Interface>>
Resource

<<Interface>>
Application

wzprofile : string

gzname : string

«zcomponentNamingContexts : ComponentElementSequence
«zcomponentProcesslds : ComponentProcessldSequence
szcomponentDevices : DeviceAssignmentSequence
s:componentimplementations : ComponentElementSequence

|
v

<<CORBATypedef>>
DeviceAssignmentSequence

Figure 3-11. Application Interface UML

3.1.3.2.1.3 Types.

3.1.3.2.1.3.1 ComponentProcessldType
The ComponentProcessldType defines a type for associating a component with its process ID. |
This type can be used to retrieve a process ID for a specific component.

struct Conponent Processl dType
{

string conponentld;
unsi gned | ong processld,;

3-33

M SRC-5000SCA
rev. 2.2

3.1.3.2.1.3.2 ComponentProcessldSequence

The ComponentProcessl dSequence type defines an unbounded sequence of components’ process
IDs.

typedef sequence <Conponent Processl dType> Conponent Processl dSequence;

3.1.3.2.1.3.3 ComponentElementType

The ComponentElementType defines atype for associating a component with an element (e.g.,
naming context, implementation ID).

struct Conponent El enent Type
{

string conponentld;
string el enmentld;
1
3.1.3.21.34 ComponentElementSequence
The ComponentElementSequence defines an unbounded sequence of ComponentElementType.

t ypedef sequence <Conponent El enent Type> Conponent El ement Sequence;

3.1.3.2.1.4 Attributes.
3132141 profile

This profile attribute contains the Software Profile (3.1.3.4). CORBA-capable and non-CORBA -
capable components have Profile files.

The readonly profile attribute shall contain either a profile element with afile reference to the
SAD profilefile or the XML for the SAD profile. Filesreferenced within a profile will have to
be obtained via FileManager. The Application will have to be queried for profile information for
component files that are referenced by an ID instead of afile name.

readonly attribute string profile;

3.1.3.2.1.4.2 name.

This readonly name attribute shall contain the name of the created Application. The
ApplicationFactory interface’ s create operation name parameter provides the name content.

readonly attribute string nane;

3.1.3.2.1.4.3 componentNamingContexts.

The componentNamingContexts attribute shall contain the list of components' Naming Service
Context within the Application for those components using CORBA Naming Service.

readonly attribute Conponent El enent Sequence conponent Nam ngCont ext s;

3.1.3.2.1.4.4 componentProcesslds.

The componentProcesslds attribute shall contain the list of components' process IDs within the
Application for components that are executing on a device.

readonly attribute Conponent Processl dSequence conponent Processl ds;

3-34

MSRC-5000SCA
rev. 2.2 |

3.1.3.2.1.45 componentDevices.

The componentDevices attribute shall contain alist of devices, which each component either
uses, isloaded on or is executed on. Each component (componentinstantiation element in the
Application’s software profile) is associated with a device.

readonly attribute Devi ceAssi gnnent Sequence conponent Devi ces;

3.1.3.2.1.4.6 componentimplementations.

The componentlmplementations attribute shall contain the list of components SPD
implementation IDs within the Application for those components created.

readonly attribute Conponent El enent Sequence conponent | npl ement ati ons;

3.1.3.2.1.5 Genera Class Behavior.

The Application shall delegate the implementation of the inherited Resource operations (runTest,
start, stop, configure, and query) to the Application’s Resource component (Assembly
Controller) identified by the Application’s SAD assemblycontroller element. The Application
shall propagate exceptions raised by the Application’s Assembly Controller’s operations. The
initialize operation shall not be propagated to the Application’s components or its Assembly
Controller.

The intialize operation shall cause no action within an Application.

3.1.3.2.1.6 Operations.
3.1.3.2.1.6.1 releaseObject.
3.1.3.216.11 Brief Rationale.

The releaseObject operation terminates execution of the Application, returns al allocated
computing resources, and de-all ocates the Resources’ capacities in use by the devices associated
with Application. Before terminating, the Application removes the message connectivity with its
associated Applications (e.g., Ports, Resources, and Logs) in the domain.

3.13216.1.2 Synopss.
voi d rel ease(bject() raises (ReleaseError);

3.1.3.216.1.3 Behavior.
The following behavior isin addition to the LifeCycle releaseObject operation behavior.

For each Application component not created by a ResourceFactory, the releaseObject operation
shall release the component by utilizing the Resources' s rel easeObject operation. If the
component was created by a ResourceFactory, the releaseObject operation shall release the
component by the ResourceFactory releaseResource operation. The releaseObject operation
shall shutdown a ResourceFactory when no more Resour ces are managed by the
ResourceFactory. For each allocated device capable of operation execution, the releaseObject
operation shall terminate all processes / tasks of the Application’s components utilizing the
Device' s terminate operation.

For each allocated device capable of memory function, the releaseObject operation shall de-
allocate the memory associated with Application’s component instances utilizing the Device's
unload operation.

3-35

M SRC-5000SCA
rev. 2.2

The releaseObject operation shall deallocate the Devices that are associated with the Application
being released, based on the Application’s Software Profile. The actual devices deallocated
(Device deallocateCapacity) will reflect changes in capacity based upon component capacity
requirements deall ocated from them, which may also cause state changes for the Devices.

The Application shall release all client component references to the Application components.

The releaseObject operation shall disconnect Ports from other Ports that have been connected
based upon the software profile.

The releaseObject operation shall disconnect consumers and producers from a CORBA Event
Service' s event channel based upon the software profile. The releaseObject operation may
destroy a CORBA Event Service' s event channel when no more consumers and producers are
connected to it.

For components (e.g., Resource, Resour ceFactory) that are registered with Naming Service, the
releaseObject operation shall unbind those components and destroy the associated naming
contexts as necessary from the Naming Service.

The releaseObject operation for an application shall disconnect Ports first, then release the
Resour ces and Resour ceFactories, then call the terminate operation, and lastly call the unload
operation on the devices.

The releaseObject operation shall, upon successful Application release, write an
ADMINISTRATIVE_EVENT log record.

The releaseObject operation shall, upon unsuccessful Application release, write a
FAILURE_ALARM log record.

The releaseObject operation shall, upon successful Application release, send an event to the
Outgoing Domain Management event channel with event data consisting of a
DomainM anagementObjectRemovedEventType. The event datawill be populated as follows:

1. The producerld shall be the identifier attribute of the released Application.

2. The sourceld shall be the identifier attribute of the released Application.

3. The sourceName shall be the name attribute of the released Application.

4. The sourceCategory shall be APPLICATION.
The following steps demonstrate one scenario of the Application’s behavior for the release of an
Application that contains Resour ceFactory behavior:

1. Client invokes releaseObject operation.
Disconnect Ports.

Release the Resour ceFactory components.
Shutdown the Resour ceFactory components.
Release the Resour ce components.
Terminate the components processes.

N o g s~ DN

Unload the components executable images.

3-36

MSRC-5000SCA
rev. 2.2 |

8. Change the state of the associated device entries in the Domain Profile to be
available, along with device(s) memory utilization availability and processor
utilization availability based upon the Device Profile and Software Profile.

9. Unbind application components from Naming Service.

10. Log an Event indicating that the Application was either successfully or unsuccessfully
released.

11. Remove the Application reference from the applications attribute.

12. Generate an event to indicate the Application has been removed from the domain.

Figure 3-12 is a collaboration diagram depicting the behavior as described above.

1: releaseObject() 11: send DomainManagementObjectRemovedEventType
. Application —> Outgoing Domain
;< ;\ Management event channel
: Comm User
Zal Ny
. Port L - 10: writeRecords(in
] L 2 disconnectPort(in string) ProducerLogRecordSequence)
Z// :Log
3: releaseResource . .
(in ResourceNumType) 9: unbind naming context

4: shutdown()

o \

5: releaseObject() 6: unload(in string) ;O‘:;S“;{Et:_(;/’;e

‘ I [‘ : Device
: : : ExecutableDevice
Resource LoadableDevice

I
I
: ResourceFactory

CORBA Naming
\‘& Senice

8: deallocateCapacity(in Properties)

Figure 3-12. Application Behavior

31321614 Returns.
This operation does not return a value.
3.1.3216.15 ExceptiongErrors.

The releaseObject operation shall raise a ReleaseError exception when the rel easeObject
operation unsuccessfully releases the Application components due to internal processing errors.

3-37

M SRC-5000SCA
rev. 2.2

3.1.3.2.1.6.2 getPort.
3.1.3.216.2.1 Brief Rationale.

The getPort operation obtains a specific visible Port (e.g., command & control (HCI), data
(red_io or black_io), responses of the Application.

31321622 Synopss.

hj ect getPort(in string nane) raises (UnknownPort);

31321623 Behavior.

The getPort operation returns object references for port names that are in the Application SAD
exter nalports element.

3.1.3.21.6.24 Returns.

The getPort operation shall return object references only for input port names that match the port
names that are in the Application SAD external ports element.

31321625 ExceptiongErrors.
The getPort operation shall raise an UnknownPort exception if the port isinvalid.

3.1.3.2.2 ApplicationFactory.

3.1.3.22.1 Description.

The ApplicationFactory interface class provides an interface to request the creation of a specific
type of Application in the domain.

The ApplicationFactory interface class is designed using the Factory Design Pattern. The
Software Profile determines the type of Application that is created by the ApplicationFactory.

313222 UML.

<<Interface>>
ApplicationFactory

whame : string
widentifier : string
wsoftwareProfile : string

®create(name : in string, initConfiguration : in Properties, deviceAssignments : in DeviceAssignmentSequence) : Application

/ v/ \
<<CORBATypedef>> <<Interface>> <<CORBAEnum>>
DeviceAssignmentSequence Application ErrorNumberType

Figure 3-13. ApplicationFactory UML

3-38

MSRC-5000SCA
rev. 2.2 |

3.1.3.2.2.3 Types.
3.1.3.2.2.3.1 CreateApplicationRequestError Exception.

The CreateA pplicationRequestError exception is raised when the parameter CF
DeviceAssignmentSequence contains one (1) or more invalid Application component-to-device
assignment(s).

exception CreateApplicationRequest Error

{
}

3.1.3.2.2.3.2 CreateApplicationError Exception.

The CreateA pplicationError exception is raised when a create request is valid but the
Application is unsuccessfully instantiated due to internal processing errors. The error number
shall indicate an ErrorNumberType value (e.g., E2BIG, ENAMETOOLONG, ENFILE,
ENODEV, ENOENT, ENOEXEC, ENOMEM, ENOTDIR, ENXIO, EPERM). The messageis
component-dependent, providing additional information describing the reason for the error.

Devi ceAssi gnment Sequence i nval i dAssi gnnent ;

exception CreateApplicationError{ ErrorNunberType errorNunber; string nsg;}

3.1.3.2.2.3.3 Exception InvalidinitConfiguration

The InvalidinitConfiguration exception is raised when the input initConfiguration parameter is
invalid.

exception InvalidlnitConfiguration

{

b

3.1.3.2.2.4 Attributes.
3.1.3.2.24.1 name.

The readonly name attribute shall contain the type of Application that can be instantiated by the
ApplicationFactory.

Properties invalidProperties;

readonly attribute string nane;

3.1.3.2.2.4.2 softwareProfile.

The softwareProfile attribute contains the Software Profile for the Application that can be created
by the ApplicationFactory.

The readonly softwareProfile attribute shall contain either a profile element with afile reference
to the SAD profile or the XML for the SAD profile. Filesreferenced within the profile will have
to be obtained from a FileManager. The ApplicationFactory will have to be queried for profile
information for component files that are referenced by an ID instead of afile name.

readonly attribute string softwareProfile;

3.1.3.2.2.4.3 identifier.

The readonly identifier attribute shall contain the unique identifier for an ApplicationFactory
instance. Theidentifier shall beidentical to the softwareassembly element id attribute of the
ApplicationFactory’s Software Assembly Descriptor file.

3-39

M SRC-5000SCA
rev. 2.2

readonly attribute string identifier;

3.1.3.2.2.5 Operations.

3.1.3.2.251 create

31322511 Brief Rationale.

The create operation is used to create an Application within the system domain.

The create operation provides a client interface to request the creation of an Application on client
requested device(s) or the creation of an Application in which the ApplicationFactory determines
the necessary device(s) required for instantiation of the Application.

3.132251.2 Synopss.

Application create(in string name, in Properties initConfiguration, in
Devi ceAssi gnnment Sequence devi ceAssi gnnents) raises (CreateApplicationError,
Creat eAppl i cati onRequestError, InvalidlnitConfiguration);

3.1.3.2.2513 Behavior.

An Application can be comprised of one or more components (e.g., Resources, Devices, etc.).
The SAD contains Software Package Descriptors (SPDs) for each Application component. The
SPD specifies the Device implementation criteria for loading dependencies (processor kind, etc.)
and processing capacities (e.g., memory, process) for an application component. The create
operation shall use the SAD SPD implementation element to locate candidate devices capabl e of
loading and executing Application components.

If deviceAssignments (not zero length) are provided, the ApplicationFactory verifies each device
assignment, for the specified component, against the component’s SPD implementation el ement.

The create operation shall allocate (Device allocateCapacity) component capacity requirements
against candidate devices to determine which candidate devices satisfy al SPD implementation
criteriarequirements and SAD partitioning requirements (e.g., components HostCollocation,
etc.). The create operation shall only use Devices that have been granted successful capacity
allocations for loading and executing Application components, or used for data processing. The
actual Devices chosen will reflect changes in capacity based upon component capacity
requirements allocated to them, which may also cause state changes for the Devices.

The create operation shall load the Application components (including all of the Application-
dependent components) to the chosen device(s).

The create operation shall execute the application components (including all of the application-
dependent components) as specified in the application’ s Software Assembly Descriptor (SAD)
file. The create operation shall use each component’s SPD implementation code’ s stack size and
priority elements, when specified, for the execute options parameters.

The create operation shall pass the mandatory execute parameters of a Naming Context IOR,
Name Binding, and the identifier for the component in the form of CF Propertiesto the entry
points of Resource components to be executed via a Device' s execute operation.

The execute parameter for the Naming Context IOR shall be inserted into a CF Properties type.
The CF Properties ID element shall be set to "NAMING_CONTEXT_IOR" and the CF
Properties value element set to the stringified IOR of a naming context to which the component
will bind. The create operation shall create any naming contexts that do not exist to which the

3-40

MSRC-5000SCA
rev. 2.2 |

component will bind to the Naming Context IOR. The structure of the naming context path shall
be"/ DomainName / [optional naming context sequences]”. In the naming context path, each
"dash” (/) represents a separate naming context.

The execute parameter of Name Binding shall be inserted into a CF Properties type. The CF
Properties ID element shall be set to "NAME_BINDING" and CF Properties value element set
to astring in the format of "ComponentName_Uniqueldentifier". The ComponentName valueis
the SAD componentinstantiation findcomponent namingservice element’ s name attribute. The
Uniqueldentifier is determined by the implementation. The Name Binding parameter is used by
the component to bind its object reference to the Naming Context IOR parameter.

The create operation uses "ComponentName_Uniqueldentifier” to retrieve the component’s
object reference from the Naming Context IOR (See also section 3.2.1.3.). Due to the dynamics
of bind and resolve to CORBA Naming Service, the create operation should provide sufficient
attempts to retrieve component object references from CORBA Naming Service prior to
generating an exception.

For the component identifier execute parameter, the create operation shall be inserted in a CF
Properties type. The CF Properties ID element shall be set to "COMPONENT _IDENTIFIER"
and the CF Properties value element to the string format of Component_Instantiation_Identifier:
Application_Name. The Component_Instantiation_Identifier is created using the
componentinstantiation element id attribute for the component in the application’s SAD file.
The Application_Name field shall be identical to the create operation’ s input name parameter.
The Application_Name field provides a specific instance qualifier for executed Resource
components.

The create operation shall pass the componentinstantiation element “execparam” properties that
have values as parameters to execute operation. The create operation passes “execparam”
parameters values as string values.

The create operation shall, in order, initialize Resour ces, then establish connections for
Resources, and finally configure the Resour ces.

The create operation will only configure the application’ s assemblycontroller component.

The create operation shall initialize an Application component provided the component
implements the LifeCycle interface.

The create operation shall configure an application’ s assemblycontroller component provided the
assemblycontroller has configure readwrite or writeonly properties with values. The create
operation shall use the union of the input initConfiguration properties of the create operation and
the assemblycontroller’ s componentinstantiation writeable “ configure” properties that have
values. Theinput initConfiguration parameter shall have precedence over the
assemblycontroller’ s writeable “ configure” property values. The create operation, when creating
a component from a Resour ceFactory, shall pass the componentinstantiation

componentresour sefactoryref element “factoryparam” properties that have values as qualifiers
parameters to the referenced Resour ceFactory component’ s createResour ce operation.

The create operation interconnects Application components (Resources or Devices) portsin
accordance with the SAD. The create operation obtainsPorts in accordance with the SAD via
PortSupplier’s getPort operation. The create operation uses the SAD connectinterface element

3-41

M SRC-5000SCA
rev. 2.2

id attribute as the unique identifier for a specific connection when provided. The create
operation creates a connection ID when no SAD connectinterface element attributeid is
specified for a connection. The create operation obtains a Resource in accordance with the SAD
viathe CORBA Naming Service or a ResourceFactory.. The ResourceFactory can be obtained
by using the CORBA Naming Service. The create operation shall pass, with invocation of each
Resour ceFactory createResour ce operation, the Resour ceFactory configuration properties
associated with that Resource as dictated by the SAD.

The dependenciesto Log, FileManager, FileSystem, CORBA Event Service, and CORBA
Naming Service will be specified as connections in the SAD using the domainfinder element.
The create operation will establish these connections. For connections established for alLog, the
create operation shall create a unique producer log ID for each log producer. The create
operation shall invoke the PropertySet configure operation once, and only once, per log producer
(as described by the SAD usesport element) in order to set its unique PRODUCER_LOG ID
(see section 3.1.3.3.5.5.1.2 for details).For connections established for a CORBA Event

Service' s event channel, the create operation shall connect a COSEventComm PushConsumer or
PushSupplier object to the event channel as specified in the SAD’ s domainfinder element. If the
event channel does not exist, the create operation shall create the event channel.

If the Application is successfully created, the create operation shall return an Application
component reference for the created Application. A sequence of created Application references
can be obtained using the DomainManager’ s readonly applications attribute.

The create operation shall, upon successful Application creation, write an
ADMINISTRATIVE_EVENT log record.

The create operation shall, upon unsuccessful Application creation, write a FAILURE_ALARM
log record.

The dependencies to Log, FileManager, and FileSystem will appear as connectionsin the SAD
using the domainfinder element. The create operation will establish these connections. For
connections established for a Log, the create operation shall create a unique producer log ID one
time for each log producer. The create operation shall invoke the PropertySet configure
operation one time per log producer (as described by the SAD usesport element) in order to set
its unique PRODUCER_LOG _|D (see section 3.1.2.3.1 for details).

The create operation shall, upon successful Application creation, send an event to the Outgoing
Domain Management event channel with event data consisting of a
DomainM anagementObjectAddedEventType. The event datawill be populated as follows:

1. The producerld shall be the identifier attribute of the ApplicationFactory.

2. The sourceld shall be the identifier attribute of the created Application.

3. The sourceName shall be the name attribute of the created Application.

4. The sourcel OR shall be the Application component reference for the created
Application.

5. The sourceCategory shall be APPLICATION.

The following steps demonstrate one scenario of the ApplicationFactory’ s behavior for the
creation of an Application:

3-42

MSRC-5000SCA
rev. 2.2 |

1. Client invokes the create operation.

2. Evaluate the Domain Profile for available Devices that meet the Application’s
memory and processor requirements, available Dependent Applications (e.g., I/0 or
Utility resources), and dependent libraries needed by the Application. Create an
instance of an Application, if the requested Application can be created. Update the
Device(s) memory and processor utilization.

3. Allocate the Device(s) memory and processor utilization.

. Load the Application components on the devices using the appropriate Device(s)
interface provided the Application component hasn’t already been loaded.

5. Execute the Application components on the devices using the appropriate Device
interface as indicated by the application’s Software Profile.

6. Obtain the component reference (Resource or ResourceFactory) as described by the
SAD.

7. If the component obtained from CORBA Naming Services is a ResourceFactory as
indicated by the SAD, then narrow the component reference to be a ResourceFactory
component.

8. If the component is a ResourceFactory, then create a Resource using the
ResourceFactory interface.

9. If the components obtained from Naming Services are Resour ces supporting the
Resour ce interface as indicated by the SCDs, then narrow the components reference
to be Resource components.

10. Initialize the Application.

11. Get ports for the resources in order to interconnect the Resources' ports together.

12. Connect the ports that interconnect the Resources' ports together.

13. Configure the Application.

14. Return the Application object reference and log message.

15. Generate an event to indicate the Application has been added to the domain. |

Figure 3-14 is a collaboration diagram depicting the behavior as described above. |

3-43

M SRC-5000SCA
rev. 2.2

1: create(in string, in Properties, in DeviceAssignmentSequence) - -
. Outgoing Domain Management
% 15: send DomainManagementObjectAddedEventType event channel
—>

>
Comm user
- ApplicationFactory
/ 14: writeRecords(in ProducerLogRecordSequence)
Domain < —
Profile 2: Evaluate & Obtain
Application Profile Instance :Log
3: allocateCapacity

: Device| | | (in Properties) ﬂ[

12: Connect the ports that
interconnect the Resources

a Producer :
[Z\Z % l&j Port
4: load(in
FileSystem, in
string, in 6 T _r;{anow() i 9 Tna};qw(g)
LoadType) 5: execute(in . " : createResource(in 10: initi lize()
‘ [vee) string, in 6 ?emeajg ComrpéJR?t ResourceNumType, in 11 getPort(in string)
es, | TEIEENCe pe Properties, 3: configure(in Properties)
: P:EZZI;ZSI)” (Resource or p)
LoadableDevice ResourceFactory)
[[L
; CORBANamin : Resource
. ExecutableDevice W : ResourceFactory

Figure 3-14. ApplicationFactory Behavior

31322514 Returns.
The create operation returns a duplicated Application reference for the created Application.

31322515 ExceptiongErrors.

The create operation shall raise the CreateA pplicationRequestError exception when the
parameter CF DeviceAssignmentSequence contains one (1) or more invalid Application
component to device assignment(s).

The create operation shall raise the CreateA pplicationError exception when the create request is
valid but the Application cannot be successfully instantiated due to internal processing error(s).

The create operation shall raise the InvalidinitConfiguration exception when the input
initConfiguration parameter isinvalid. The InvalidinitConfiguration invalidProperties shall
identify the property that isinvalid.

3.1.3.2.3 DomainManager.

3.1.3.2.3.1 Description.

The DomainManager interfaceis for the control and configuration of the system domain.

3-44

MSRC-5000SCA
rev. 2.2 |

The DomainManager interface can be logically grouped into three categories: Human Computer
Interface (HCI), Registration, and CF administration.

The HCI operations are used to configure the domain, get the domain’s capabilities (Devices,
Services, and Applications), and initiate maintenance functions. Host operations are performed
by an HCI client capable of interfacing to the DomainManager .

The registration operations are used to register / unregister DeviceManagers, DeviceManager’s
Devices, DeviceManager’s Services, and Applications at startup or during run-time for dynamic
device, service, and application extraction and insertion.

The administration operations are used to access the interfaces of registered DeviceManagers
and DomainManager's FileManager.

313232 UML.
The DomainManager Interface UML is depicted in Figure 3-15.

<<Interface>>
PropertySet

M onfigure()
Bquery()

i

<<Interface>>
DomainManager

widentifier : string

wdeviceManagers : DeviceManagerSequence
wapplications : ApplicationSequence
wapplicationFactories : ApplicationFactorySequence
wdileMgr : FileManager

wdomainManagerProfile : string

®egisterDevice(registeringDevice : in Device, registeredDeviceMgr : in DeviceManager) : void

W egisterDeviceManager(deviceMgr : in DeviceManager) : void

M nregisterDeviceManager(deviceMgr : in DeviceManager) : void

®unregisterDevice(unregisteringDevice : in Device) : void

®installApplication(profileFileName : in string) : void

®uninstallApplication(applicationld : in string) : void

®egisterSenice(registeringSenice : in Object, registeredDeviceMgr : in DeviceManager, name : in string) : void

M nregisterSenice(unregisteringSenice : in Object, name : in string) : void
®egisterwithEventChannel(registeringObject : in Object, registeringld : in string, eventChannelName : in string) : void
®unregisterFromEventChannel(unregisteringld : in string, eventChannelName : in string) : wid

- 7T S

yuses .

CORBAENnum>>

<<Interface>> / <<Interface>> / <<Interface>> <<CORBAEXxception>> || <<
icati InvalidObjectReference || ErrorNumberType
Application Device / FileManager) b

£ v i N
<<_|ntgrface>> <<Interface>> <<CORBAEXxception>>| |<<CORBAEXxception>>
ApplicationFactory DeviceManager InvalidFileName InvalidProfile

Figure 3-15. DomainManager I nterface UM L

3-45

M SRC-5000SCA
rev. 2.2

3.1.3.2.3.3 Types.
3.1.3.2.3.3.1 ApplicationinstallationError.

The ApplicationinstallationError exception type is raised when an Application installation has
not completed correctly. The error number shall indicate an ErrorNumberType value (e.g.,
EINVAL, ENAMETOOLONG, ENOENT, ENOMEM, ENOSPC, ENOTDIR, ENXIO). The
message is component-dependent, providing additional information describing the reason for the
error.

exception ApplicationlnstallationError{ ErrorNunberType errorNunber; string
nmsg; };

3.1.3.23.3.2 Invdididentifier.

The Invalididentifier exception indicates an application identifier isinvalid.

exception Invalidldentifier {};

3.1.3.2.3.3.3 DeviceManagerSequence.
This type defines an unbounded sequence of DeviceManager (S).

t ypedef sequence <Devi ceManager > Devi ceManager Sequence

3.1.3.23.34 ApplicationSequence.
This type defines an unbounded sequence of Application(s).

t ypedef sequence < Application> ApplicationSequence

3.1.3.2.3.35 ApplicationFactorySequence.
Thistype defines an unbounded sequence of ApplicationFactory(s).

typedef sequence < ApplicationFactory> ApplicationFactorySequence

3.1.3.2.3.3.6 DeviceManagerNotRegistered Exception

The DeviceM anagerNotRegistered exception indicates the registering Device' s DeviceManager
is not registered in the DomainManager. A Device' s DeviceManager hasto be registered prior
to a Device registration to the DomainManager .

exception Devi ceManager Not Regi stered {};

3.1.3.2.3.3.7 RegisterError.

The RegisterError exception indicates that an internal error has occurred to prevent
DomainManager registration operations from successful completion. The error number shall
indicate an ErrorNumberType value. The message is component-dependent, providing additional
information describing the reason for the error.

exception RegisterError{ ErrorNunmber Type errorNunber; string nsg;};

3.1.3.2.3.3.8 UnregisterError.

The UnregisterError exception indicates that an internal error has occurred to prevent
DomainManager unregister operations from successful completion. The error number shall

3-46

MSRC-5000SCA
rev. 2.2 |

indicate an ErrorNumberType value. The message is component-dependent, providing additional
information describing the reason for the error.

exception UnregisterError{ ErrorNunmber Type errorNunber; string nmsg; };

3.1.3.2.3.3.9 ApplicationUninstallationError.

The ApplicationUninstallationError exception type is raised when an Application uninstallation
has not completed correctly. The error number shall indicate an ErrorNumberType value. The
message is component-dependent, providing additional information describing the reason for the
error.

exception ApplicationUninstallationError{ ErrorNunberType errorNunber; string
nsg; };
3.1.3.2.3.3.10 InvalidEventChannelName.

The InvalidEventChannel Name exception indicates that a DomainManager was not able to
locate the event channel.

exception I nvalidEvent Channel Name{};”

3.1.3.2.3.3.11 AlreadyConnected.

The AlreadyConnected exception indicates that a registering consumer is already connected to
the specified event channel.

exception Al readyConnected{};”

3.1.3.2.3.3.12 NotConnected.

The NotConnected exception indicates that the unregistering consumer was not connected to the
specified event channel.

excepti on Not Connected{};”

3.1.3.2.3.4 Attributes.
3.1.3.2.34.1 deviceManagers.

The deviceManagers attribute is read-only containing a sequence of registered DeviceManagers
in the domain. The readonly deviceManagers attribute shall contain alist of registered
DeviceManagers that have registered with the DomainManager. The DomainManager shall
write an ADMINISTRATIVE_EVENT log to a DomainManager’s Log, when the
deviceManagers attribute is obtained by a client.

readonly attribute Devi ceManager Sequence devi ceManagers;

3.1.3.2.3.4.2 applications.

The applications attribute is read-only containing a sequence of instantiated Applicationsin the

domain. The readonly applications attribute shall contain the list of Applications that have been
instantiated. The DomainManager shall write an ADMINISTRATIVE_EVENT log record to a
DomainManager’s Log, when the application’s attribute is obtained by a client.

readonly attribute ApplicationSequence applications;

3-47

M SRC-5000SCA
rev. 2.2

3.1.3.2.3.4.3 applicationFactories.

The readonly applicationFactories attribute shall contain alist with one ApplicationFactory per
application (SAD file and associated files) successfully installed (i.e. no exception raised). The
DomainManager shall writean ADMINISTRATIVE_EVENT log record to a
DomainManager’s Log, when the applicationFactories attribute is obtained by a client.

readonly attribute ApplicationFactorySequence applicationFactori es;

3132344 fileMagr.

The readonly fileMgr attribute shall contain the DomainManager’s FileManager. The
DomainManager shall write an ADMINISTRATIVE_EVENT log record to a
DomainManager’s Log, when the fileMgr attribute is obtained by a client.

readonly attribute Fil eManager fil eMyr;

3.1.3.23.4.5 domainManagerProfile.
The domainM anagerProfil e attribute contains the DomainManager’ s profile.

The readonly domainM anagerProfile attribute shall contain either a profile element with afile
reference to the DomainManager Configuration Descriptor (DMD) profile or the XML for the
DomainManager’s (DMD) profile. Files referenced within the profile will have to be obtained
from the DomainManager’ s FileManager.

readonly attribute string domai nManager Profil e;

3.1.3.2.3.4.6 identifier.

The readonly identifier attribute shall contain a unique identifier for a DomainManager instance.
The identifier shall be identical to the domainmanagerconfiguration element id attribute of the
DomainManager’ s Descriptor (DMD) file.

readonly attribute string identifier;

3.1.3.2.3.5 General Class Behavior.

During component construction the DomainManager shall register itself with the CORBA
Naming Service. During Naming Service registration the DomainManager shall create a
"naming context" using "/DomainName" as its name.ID component and ™" (Null string) asits
name.kind component, then create a"name binding" to the "/DomainName" naming context
using "/DomainManager” asits name.ID component, " (Null string) asits name.kind
component, and the DomainManager's object reference. (Seealso 3.1.3.2.2.5.1.3)

Since alog service is not arequired component of a JTRS installation, a DomainManager
implementation may, or may not have access to a Log. However, if log service(s) are available, a
DomainManager implementation may use one or more of them. The Logs utilized by the
DomainManager implementation shall be defined in the DMD. See Appendix D for further
description of the DMD file.

Once a service specified in the DMD is successfully registered with the DomainManager (via
register DeviceManager or register Service operations), the DomainManager shall begin to use
the service (e.g., Log).

3-48

MSRC-5000SCA
rev. 2.2 |

The DomainManager shall create its own FileManager component that consists of all registered
DeviceManager’s FileSystems.

The DomainManager shall restore ApplicationFactories after startup for applications that were
previously installed by the DomainManager install Application operation. The DomainManager
shall add the restored ApplicationFactories to the DomainManager’ s applicationFactories
attribute.

The DomainManager shall create the Incoming Domain Management and Outgoing Domain
Management event channels.

3.1.3.2.3.6 Operations.
3.1.3.23.6.1 registerDeviceManager.
3.13236.11 Brief Rationae.

The registerDeviceManager operation is used to register a DeviceManager, its Device(s), and its
Services. Software profiles can also be obtained from the DeviceManager's FileSystem.

3.1.3236.1.2 Synopsis.

voi d registerDevi ceManager (i n Devi ceManager deviceMyr) raises
(I'nval i dObj ect Ref erence, InvalidProfile, RegisterError); |

313236.13 Behavior.

The registerDeviceManager operation verifies that the input parameter, deviceMgr, isanot anil
CORBA component reference.

The registerDeviceManager operation shall add the input deviceMgr to the DomainManager’s
deviceManagers attribute, if it does not already exist. The registerDeviceManager operation
shall add the input deviceMgr’ s registeredDevices and each registeredDevice' s attributes (e.g.,
identifier, softwareProfile' s allocation properties, etc.) to the DomainManager. The

register DeviceManager operation associates the input deviceMgr’ s with the input deviceMgr’s
registeredDevices in the DomainManager in order to support the unregister DeviceManager
operation.

The registerDeviceManager operation shall add the input deviceMgr’ s registeredServices and
each registeredService' s names to the DomainManager. The registerDeviceManager operation
associates the input deviceMgr’ s with the input deviceMgr’ s registeredServicesin the
DomainManager in order to support the unregister DeviceManager operation.

The registerDeviceManager operation shall perform the connections specified in the connections
element of the deviceMgr’s Device Configuration Descriptor (DCD) file. If the
DeviceManager’s DCD describes a connection for a service that has not been registered with the
DomainManager, the register DeviceManager operation shall establish any pending connection
when the service registers with the DomainManager by the register DeviceManager operation.
For connections established for a CORBA Event Service's event channel, the

register DeviceManager operation shall connect a CosEventComm PushConsumer or
PushSupplier object to the event channel as specified in the DCD’ s domainfinder element. If the
event channel does not exist, the registerDeviceManager operation shall create the event
channel.

3-49

M SRC-5000SCA
rev. 2.2

The registerDeviceManager operation shall obtain all the Software profiles from the registering
DeviceManager's FileSystems.

The registerDeviceManager operation shall mount the DeviceManager’ s FileSystem to the
DomainManager’s FileManager. The mounted FileSystem name shall have the format,
“/DomainName/HostName”, where DomainName is the name of the domain and HostName is
the input deviceMgr’ s label attribute.

The registerDeviceManager operation shall, upon unsuccessful DeviceManager registration,
writea FAILURE_ALARM log record to a DomainManager’s Log.

The registerDeviceManager operation shall, upon successful DeviceManager registration, send
an event to the Outgoing Domain Management event channel with event data consisting of a
DomainManagementObjectAddedEventType. The event datawill be populated as follows:

The producerld shall be the identifier attribute of the DomainManager.

The sourceld shall be the identifier attribute of the registered DeviceManager.
The sourceName shall be the label attribute of the registered DeviceManager.
The sourcel OR shall be the registered DeviceManager object reference.

The sourceCategory shall be DEVICE_MANAGER.

agrwbdE

The following UML sequence diagram (Figure 3-16) illustrates the DomainManager’ s behavior
for the registerDeviceManager operation.

3-50

DeviceManager ‘ ‘

: DomainManager ‘ ‘

€L

1: registereviceManager(in DeucerLanager)

4 getFileSys
|

fleSys readonly

attribute

6: getRegisteredDevices

readonly
registeredDevices
attiibute

7: getDeviceConfigurationProfile

readonly
deviceConfigurationProfile
attribute, neded for
Devices' connections

9 getRegisteredSenices

readonly
registeredSenices
attibute, add to
doman senices

Steps 16 thru 20 are
optional, provided the
DeviceManager is using
aSenvice and the Senice
exists in the Domain.

16: getPort(in string)

=

[2: add DeviceManager to DomainManager

XML SPD < Port Log
Parser

Outgoing Doman Management
Event Channel

3: send D#ma\nManagemenlome%tAddedEwntType fc%ne added Dewce%anager

5: mount De

ystem to D

Steps 9 thru 15 needs to be repe:
Device registered with the Device!
12 thru 15 are optional, provided i
using a Sgnvice and the Senice e
Domain. Devices that were previ

that are waiting for Senices are al
senices that come into existence,
o

ted for each
anager. steps
e Device is

ists in the

isly registered
0 connected to
during a

Device's readlonly attributes (identifie}
softwareProfile, etc.) This step is rep
for each aunpu(e, |

eated

R

8: get atuibutes | |

/

This step s optiofal provided
the XML has not ghanged and
has already been parsed

10: Parse and get device properties (eg., allocaipn)

11: add Dy

lm teredDevice to D

=

12: getPort(in string)

[13: Narrow to Port Interfacy

14: Obtain a Senice (eg., Log) from Domain

15 conneL(Pon(m Object, in strin

s

Figure 3-16. DomainManager Sequence Diagram for registerDeviceManager Oper ation

31323614

17: Narrow to Port Interfact

18: Obtain a Senice (e.g., Log) fom Domain

19: connectPort(in Object, in strin

o)

20: Produce

fLe

Returns.

This operation does not return avalue.

3-51

gl

MSRC-5000SCA

rev. 2.2 |

M SRC-5000SCA
rev. 2.2

3.1.3236.1.5 ExceptiongErrors.

The registerDeviceManager operation shall raise the CF InvalidObjectReference exception when
the input parameter deviceMgr contains an invalid reference to a DeviceManager interface.

The registerDeviceManager operation shall raise the RegisterError exception when an internal
error exists which causes an unsuccessful registration.

3.1.3.2.3.6.2 registerDevice.
3.1.3.2.3.6.2.1 Brief Rationale.

The registerDevice operation is used to register a Device for a specific DeviceManager in the
DomainManager's Domain Profile.

31323622 Synopsis.

voi d regi sterDevice(in Device registeringDevice, in DeviceManager
regi st eredDevi ceMgr) raises (lnvalidObjectReference, InvalidProfile,
Devi ceManager Not Regi st ered, RegisterError);

313236.23 Behavior.

The registerDevice operation verifies that the input parameters, registeringDevice and
registeredDeviceMgr, are not nil CORBA component references.

The registerDevice operation shall add the registeringDevice and the registeringDevice' s
attributes (e.g., identifier, softwareProfile’ s allocation properties, etc.) to the DomainManager, if
it does not already exist.

The register Device operation associates the input registeringDevice with the input
registeredDeviceMgr in the DomainManager when the input registeredDeviceMgr isavalid
registered DeviceManager in the DomainManager.

When the registering Device' s parent DeviceManager’s DCD describes service connections for
the registering Device, the register Device operation shall establish the connections.

The registerDevice operation shall, upon successful device registration, write an
ADMINISTRATIVE_EVENT log record to aDomainManager’ s Log, to indicate that the device
has successfully registered with the DomainManager.

Upon unsuccessful device registration, the register Device operation shall write a
FAILURE_ALARM log record to a DomainManager’ s Log, when the InvalidProfile exception
israised to indicate that the registeringDevice has an invalid profile.

Upon unsuccessful device registration, the register Device operation shall write a
FAILURE_ALARM log record to a DomainManager’ s Log, indicating that the device could not
register because the DeviceManager is not registered with the DomainManager.

Upon unsuccessful device registration, the register Device operation shall write a
FAILURE_ALARM log record to a DomainManager’s Log, because of an invalid reference
input parameter.

Upon unsuccessful device registration, the register Device operation shall write a
FAILURE_ALARM log record to a DomainManager’ s Log, because of an internal registration
error.

3-52

MSRC-5000SCA
rev. 2.2 |

The register Device operation shall, upon successful Device registration, send an event to the
Outgoing Domain Management event channel with event data consisting of a
DomainManagementObjectAddedEventType. The event datawill be populated as follows:

The producerld shall be the identifier attribute of the DomainManager.
The sourceld shall be the identifier attribute of the registered Device.
The sourceName shall be the label attribute of the registered Device.
The sourcel OR shall be the registered Device object reference.

The sourceCategory shall be DEVICE.

agrwbdPE

The following UML sequence diagram (Figure 3-17) illustrates the DomainManager's behavior
for the registerDevice operation.

: DeviceManager : DomainManager registeringDevice : XML SPD : Port : Log |Outgoing Domain Management
Device Parser Event Channel
&

1: registerDevice(in Device, in D%viceManager)

2: get alfribu\es

Device's readonly atmbl*tes (identifier,
sofwtareProfile, etc.) This step is repeated
for each attribute. |

3: Parse and get device properties (e.g., allocation)

the XML has n t changed and
has already be n parsed.

This step is optional provided T

4: associate registeringdevice with
registered DeviceManager i DomainManager

ﬂ

5: add registeringDevice to DonainManager

|
|
-
|
|
|

i

6: getDeviceConfigurationProfile

7: Narrow to Port Interface

is usjng a Senice and the

ice exists in the Domain.

rom Domain Senvi

Steps 7 thru 9 are optiopal,
provided the registeringDevice
8: Obtain Senice (e.g., Log)

[

o connec‘Port(in Object, in string) ‘ ‘
I I ’U

10: senq DomainManagem entObje¢tAddedEventType ‘forlhe Added Device

11: wLiteRecurds(in ProducerLo RecordSequence)‘

|
|
|
|
|
|
|
|
|
|
b
!

e R e N —————————————————

Figure 3-17. DomainManager Sequence Diagram for registerDevice Oper ation

3.13.23.6.24 Returns.
This operation does not return avalue.
3.1.3.236.25 ExceptiongErrors.

The register Device operation shall raise the CF InvalidProfile exception when:

3-53

M SRC-5000SCA
rev. 2.2

1. TheDevice's SPD file and the SPD’ s referenced files do not exist or cannot be processed
due to the file not being compliant with XML syntax, or
2. The Device's SPD does not reference allocation properties.

The register Device operation shall raise a DeviceM anagerNotRegistered exception when the
input registeredDeviceMgr (not nil reference) is not registered with the DomainManager.

The register Device operation shall raise the CF InvalidObjectReference exception when input
parameters registeringDevice or registeredDeviceMgr contains an invalid reference.

The register Device operation shall raise the RegisterError exception when an internal error exists
which causes an unsuccessful registration.

3.1.3.2.3.6.3 installApplication.
3.1.3.236.31 Brief Rationale.

The install Application operation is used to install new application softwarein the
DomainManager's Domain Profile. An installer application typically invokes this operation
when it has completed the installation of a new application into the domain.

3.1.3.2.36.3.2 Synopsis.

void install Application(in string profileFileNanme) raises (InvalidProfile,
I nval i dFi | eNanme, ApplicationlnstallationError);

3.1.3.23.6.3.3 Behavior.
The profileFileName is the absol ute path of the profile filename.

The install Application operation shall verify the application’s SAD file existsin the
DomainManager’s FileManager and all the files the application is dependent on are alsoresident.

The install Application operation shall writean ADMINISTRATIVE_EVENT log record to a
DomainManager’s Log, upon successful Application installation.

The install Application operation shall, upon unsuccessful application installation, write a
FAILURE_ALARM log record to a DomainManager’s Log.

The install Application operation shall, upon successful application installation, send an event to
the Outgoing Domain Management event channel with event data consisting of a
DomainManagementObjectAddedEventType. The event datawill be populated as follows:

The producerld shall be the identifier attribute of the DomainManager.

The sourceld shall be the identifier attribute of the installed ApplicationFactory.
The sourceName shall be the name attribute of the installed ApplicationFactory.
The sourcel OR shall be the installed ApplicationFactory object reference.

The sourceCategory shall be APPLICATION_FACTORY.

agrowdPE

31323634 Returns.
This operation does not return avalue.

MSRC-5000SCA

rev. 2.2 |

3.1.3.2.3.6.35 ExceptiongErrors.

The install Application operation shall raise the ApplicationlnstallationError exception when the
installation of the Application file(s) was not successfully completed.

The install Application operation shall raise the InvalidFileName exception when the input SAD
file or any referenced file name does not exist in the file system as defined in the absolute path of
the input profileFileName. When the InvalidFileName exception occurs, the install Application
operation shall log aFAILURE_ALARM log record to a DomainManager’s Log with a message
consisting of “install Application::invalid fileis xxx”, where “xxx” is the input or referenced file
name that is bad.

The install Application operation shall raise the CF InvalidProfile exception when the input SAD
file or any referenced file is not compliant with XML DTDs defined in Appendix D or
referenced property definitions are missing. When the CF InvalidProfile exception occurs, the
install Application operation shall log a FAILURE_ALARM log record to a DomainManager’ s
Log with a message consisting of “install Application::invalid Profileisyyy,” where “yyy” isthe
input or referenced file name that is bad along with the element or position within the profile that
is bad.

3.1.3.2.3.6.4 unregisterDeviceManager.

3.1.3.2.3641 Brief Rationde.

The unregisterDeviceManager operation is used to unregister a DeviceManager component from
the DomainManager’s Domain Profile. A DeviceManager may be unregistered during run-time
for dynamic extraction or maintenance of the DeviceManager.

31323642 Synopsis.

voi d unregi st erDevi ceManager (i n Devi ceManager devi ceMyr) raises
(I'nval i dObj ect Ref erence, UnregisterError);

31323643 Behavior.

The unregisterDeviceManager operation shall unregister a DeviceManager component from the
DomainManager.

The unregisterDeviceManager operation shall release all device(s) and service(s) associated with
the DeviceManager that is being unregistered.

The unregister DeviceManager operation shall disconnect consumers and producers (e.g.,
Devices, Log, DeviceManager, etc.) from a CORBA Event Service event channel based upon the
software profile. The unregisterDeviceManager operation may destroy the CORBA Event
Service event channel when no more consumers and producers are connected to it.

The unregisterDeviceManager operation shall unmount all DeviceManager’ s FileSystems from
its File Manager.

The unregister DeviceManager operation shall, upon the successful unregistration of a
DeviceManager, write an ADMINISTRATIVE_EVENT log record to a DomainManager’s Log.

The unregister DeviceManager operation shall, upon unsuccessful unregistration of a
DeviceManager, write a FAILURE_ALARM log record to a DomainManager’s Log.

3-55

M SRC-5000SCA
rev. 2.2

The unregister DeviceManager operation shall, upon successful unregistration, send an event to
the Outgoing Domain Management event channel with event data consisting of a
DomainM anagementObjectRemovedEventType. The event datawill be populated as follows:

The producerld shall be the identifier attribute of the DomainManager.

The sourceld shall be the identifier attribute of the unregistered DeviceManager .
The sourceName shall be the label attribute of the unregistered DeviceManager.
The sourceCategory shall be DEVICE_ MANAGER.

PO

31323644 Returns.
This operation does not return avalue.

31323645 ExceptiongErrors.
The unregisterDeviceManager operation shall raise the CF InvalidObjectReference when the
input parameter DeviceManager contains an invalid reference to a DeviceManager interface.

The unregisterDeviceManager operation shall raise the UnregisterError exception when an
internal error exists which causes an unsuccessful unregistration.

3.1.3.2.3.6.5 unregisterDevice.

3.1.3.23.651 Brief Rationale.

The unregisterDevice operation is used to remove a device entry from the DomainManager for a
specific DeviceManager .

3.1.3.236.52 Synopsis.

voi d unregi sterDevice(in Device unregisteringDevice) raises
(I'nval i dObj ect Ref erence, Unregi sterError)

3.1.3.2.3.653 Behavior.
The unregister Device operation shall remove a device entry from the DomainManager .

The unregister Device operation shall release (client-side CORBA release) the
unregisteringDevice from the Domain Manager.

The unregister Device operation shall disconnect the Device's consumers and producers from a
CORBA Event Service event channel based upon the software profile. The unregisterDevice
operation may destroy the CORBA Event Service event channel when no more consumers and
producers are connected to it.

The unregister Device operation shall, upon the successful unregistration of a Device, write an
ADMINISTRATIVE_EVENT log record to a DomainManager’s Log.

The unregister Device operation shall, upon unsuccessful unregistration of a Device, write a
FAILURE_ALARM log record to a DomainManager’s Log.

The unregister Device operation shall, upon successful Device unregistration, send an event to the
Outgoing Domain Management event channel with event data consisting of a
DomainM anagementObjectRemovedEventType. The event datawill be populated as follows:

1. Theproducerld shall be theidentifier attribute of the DomainManager .
2. The sourceld shall be the identifier attribute of the unregistered Device.

3-56

MSRC-5000SCA
rev. 2.2 |

3. The sourceName shall be the lable attribute of the unregistered Device.
4. The sourceCategory shall be DEVICE.

3.13.23.654 Returns.
This operation does not return avalue.

3.1.3.2.3.6.55 ExceptiongErrors.
The unregister Device operation shall raise the CF InvalidObjectReference exception when the
input parameter contains an invalid reference to a Device interface.

The unregister Device operation shall raise the UnregisterError exception when an internal error
exists which causes an unsuccessful unregistration.

3.1.3.2.3.6.6 uninstall Application.

3.13236.6.1 Brief Rationae.

The uninstall Application operation is used to uninstall an ApplicationFactory in the
DomainManager’s Domain Profile.

An installer application typically invokes this operation when removing an ApplicationFactory
from the domain.

3.1.3.236.6.2 Synopsis.
voi d uninstall Application(in string Applicationld)raises (Invalidldentifier,

ApplicationUninstallationError);
3.1.3.23.6.6.3 Behavior.

The Applicationld parameter is the softwareassembly element id attribute of the
ApplicationFactory’ s Software Assembly Descriptor file.

The uninstall Application operation shall remove al files associated with the Application.

The uninstall Application operation shall make the ApplicationFactory unavailable from the
DomainManager (i.e. its services no longer provided for the Application).

The uninstall Application operation shall, upon successful uninstall of an Application, write an
ADMINISTRATIVE_EVENT log record to aDomainManager’s Log.

The uninstall Application operation shall, upon unsuccessful uninstall of an Application, write a
FAILURE_ALARM log record to a DomainManager’s Log.

The uninstall Application operation shall, upon unsuccessful uninstall of an Application, log a
FAILURE_ALARM log record to a DomainManager’s Log.

The uninstall Application operation shall, upon successful uninstall of an application, send an
event to the Outgoing Domain Management event channel with event data consisting of a
DomainM anagementObjectRemovedEventType. The event datawill be populated as follows:

1. The producerld shal be the identifier attribute of the DomainManager .

2. The sourceld shall be the identifier attribute of the uninstalled ApplicationFactory.
3. The sourceName shall be the name attribute of the uninstalled ApplicationFactory.
4. The sourceCategory shall be APPLICATION_FACTORY.

3-57

M SRC-5000SCA
rev. 2.2

3.13236.64 Returns.
This operation does not return avalue.

3.1.3.2.3.6.6.5 ExceptiongErrors.

The uninstall Application operation shall raise the Invalididentifier exception when the
Applicationld isinvalid.

The uninstall Application operation shall raise the ApplicationUninstallationError exception
when an internal error causes unsuccessful uninstall of the application.

3.1.3.2.3.6.7 registerService.
3.1.3236.71 Brief Rationae.

The register Service operation is used to register a service for a specific DeviceManager with the
DomainManager.

3.1.3.236.7.2 Synopsis.

voi d regi sterService(in Cbject registeringService, in DeviceManager
regi steredDevi ceMgr, in string nane) raises (lnvalidObjectReference,
Devi ceManager Not Regi stered, RegisterError);

3.1.3.2.36.7.3 Behavior.

The register Service operation shall verify the input registeringService and registeredDeviceMgr
are valid object references.

The register Service operation shall verify the input registeredDeviceMgr has been previously
registered with the DomainManager.

The register Service operation shall add the registeringService's object reference and the
registeringService' s name to the DomainManager, if the name for the type of service being
registered does not exist within the DomainManager. However, if the name of the registering
serviceis aduplicate of aregistered service of the same type, then the new service shall not be
registered with the DomainManager .

The register Service operation shall associate the input registeringService parameter with the
input registeredDeviceMgr parameter in the DomainManager’s, when the registeredDeviceMgr
parameter indicates a DeviceManager registered with the DomainManager .

The register Service operation shall, upon successful service registration, establish any pending
connection requests for the registeringService. The register Service operation shall, upon
successful service registration, write an ADMINISTRATIVE_EVENT log record to a
DomainManager’s Log.

The register Service operation shall, upon unsuccessful service registration, write a
FAILURE_ALARM log record to a DomainManager’s Log.

The register Service operation shall, upon successful service registration, send an event to the
Outgoing Domain Management event channel with event data consisting of a
DomainM anagementObjectAddedEventType. The event data will be populated as follows:

1. The producerld shal be the identifier attribute of the DomainManager .
2. The sourceld shall be the identifier attribute from the componentinstantiation el ement
associated with the registered service.

3-58

MSRC-5000SCA
rev. 2.2 |

3. The sourceName shall be the input name parameter for the registering service.
4. The sourcelOR shall be the registered service object reference.
5. The sourceCategory shall be SERVICE.

The following UML sequence diagram (Figure 3-18) illustrates the DomainManager's behavior
for the register Service operation.

: : Device's Uses IOutGoing Domain Management : Log
DeviceManager DomainManager Port : Port Event Channel

L

1: registerSenice(in Cblect in DeviceManager, in string) ‘

2: asscciate registeingSenice with
registeredDeviceManager in
Domainl ger

|
|
< |
|
|

p—

3 add registen'ngSerTce to DomainManager

4: connectPort(in Object, in string)

5: send Domai nl\/tan?genentobj ectAdded E\entType
\

6: \Mite}?ecords(in Produceﬂ.ogRec%deequence)

3-59

M SRC-5000SCA
rev. 2.2

Figure 3-18. DomainManager Sequence Diagram for register Service Operation

3.13.23.6.74 Returns.
This operation does not return a value.

3.1.3.2.3.6.7.5 ExceptiongErrors.

The register Service operation shall raise a DeviceManagerNotRegistered exception when the
input registeredDeviceMgr parameter is not a nil reference and is not registered with the
DomainManager.

The register Service operation shall raise the CF InvalidObjectReference exception when input
parameters registeringService or registeredDeviceMgr contains an invalid reference.

The register Service operation shall raise the RegisterError exception when an internal error
exists which causes an unsuccessful registration.

3.1.3.2.3.6.8 unregisterService.

3.1.3.23.6.81 Brief Rationale.

The unregister Service operation is used to remove a service entry from the DomainManager for
a specific DeviceManager.

3.1.3.2.36.82 Synopss.

voi d unregisterService(in Object unregisteringService, in string nanme) raises
(I'nvalidQObjectReference, UnregisterError);

3.1.3.2.3.6.8.3 Behavior.

The unregister Service operation shall remove the unregisteringService entry specified by the
input name parameter from the DomainManager .

The unregister Service operation shall release (client-side CORBA release) the
unregisteringService from the DomainManager .

The unregister Service operation shall, upon the successful unregistration of a Service, write an
ADMINISTRATIVE_EVENT log record to aDomainManager’s Log.

The unregister Service operation shall, upon unsuccessful unregistration of a Service, write a
FAILURE_ALARM log record to a DomainManager’s Log.

The unregister Service operation shall, upon successful service unregistration, send an event to
the Outgoing Domain Management event channel with event data consisting of a
DomainM anagementObjectRemovedEventType. The event datawill be populated as follows:

1. The producerld shal be the identifier attribute of the DomainManager .

2. The sourceld shall be the ID attribute from the componentinstantiation element
associated with the unregistered service.

3. The sourceName shall be the input name parameter for the unregistering service.

4. The sourceCategory shall be SERVICE.

31323684 Returns.
This operation does not return avalue.

3-60

MSRC-5000SCA
rev. 2.2 |

3.1.32.36.85 ExceptiongErrors.
The unregister Service operation shall raise the CF InvalidObjectReference exception when the
input parameter contains an invalid reference to a Service interface.

The unregister Service operation shall raise the UnregisterError exception when an internal error
exists which causes an unsuccessful unregistration.

3.1.3.2.3.6.9 registerWithEventChannel.

3.1.3.236.9.1 Brief Rationale.

The registerWithEventChannel operation is used to connect a consumer to a domain’s event
channel.

3.1.3236.9.2 Synopsis.

voi d regi ster Wt hEvent Channel (i n Object registeringOoject, in string
regi steringld, in string event Channel Nane) raises (InvalidojectReference,
I nval i dEvent Channel Nane, Al readyConnect ed);

3.13.236.93 Behavior.

The registerWithEventChannel operation shall connect the input registeringObject to an event
channel as specified by the input eventChannel Name.

3.13.23.694 Returns.

This operation does not return avalue.

3.1.3.2.3.6.95 ExceptiongErrors.

The registerWithEventChannel operation shall raise the CF InvalidObjectReference exception
when the input registeringObject parameter contains an invalid reference to a CosEventComm
PushConsumer interface.

The registerWithEventChannel operation shall raise the InvalidEventChannel Name exception
when the input eventChannel Name parameter contains an invalid event channel name (e.g,
"ODM_Channel").

The registerWithEventChannel operation shall raise AlreadyConnected exception when the input
parameter contains a connection to the event channel for the input registeringld parameter.
3.1.3.2.3.6.10 unregisterFromEventChannel.

3.1.3.2.3.6.10.1 Brief Rationale.

The unregister FromEventChannel operation is used to disconnect a consumer from adomain’s
event channel.

3.1.3.2.36.10.2 Synopsis.
voi d unregi st er FromEvent Channel (in string unregisteringld, in string

event Channel Nane) raises (Invali dEvent Channel Nane, Not Connect ed);
3.1.3.2.3.6.10.3 Behavior.

The unregister FromEventChannel operation shall disconnect a registered component from the
event channel asidentified by the input parameters.

3-61

M SRC-5000SCA
rev. 2.2

3.1.3.2.3.6.104 Returns.
This operation does not return avalue.

3.1.3.2.3.6.10.5 Exceptions/Errors.

The unregister FromEventChannel operation shall raise the InvalidEventChannel Name exception
when the input eventChannel Name parameter contains an invalid reference to an event channel
(e.g., "ODM_Channel").

The unregister FromEventChannel operation shall raise the NotConnected exception when the
input parameter unregisteringld parameter is not connected to specified input event channel.

3.1.3.24 Device.
3.1.3.24.1 Description.

A Deviceisatype of Resource within the domain and has the requirements as stated in the
Resource interface. Thisinterface defines additional capabilities and attributes for any logical
Devicein thedomain. A logical Deviceis afunctional abstraction for a set (e.g., zero or more)
of hardware devices and provides the following attributes and operations:

1. Software Profile Attribute — This SPD XML profile defines the logical Device
capabilities (data/command uses and provides ports, configure and query properties,
capacity properties, status properties, etc.), which could be a subset of the hardware
device's capabilities.

2. State Management & Status Attributes — This information describes the administrative,
usage, and operational states of the device.

3. Capacity Operations - In order to use a device, certain capacities (e.g., memory,
performance, etc.) must be obtained from the Device. The capacity properties will vary
among devices and are described in the Software Profile. A device may have multiple
allocatable capacities, each having its own unique capacity model.

313242 UML.
The Device Interface UML is depicted in Figure 3-19.

3-62

<<Interface>>
Resource

<<Interface>>
Device

csusageState : UsageType
szadminState : AdminType
gzoperationalState : OperationalType
wsoftwareProfile : string

«label : string

czcompositeDevice : AggregateDevice

®allocateCapacity(capacities : in Properties) : boolean
®deallocateCapacity(capacities : in Properties) : woid

/

/ uses
14
<<CORBATypedef>>
Properties

\
N\

MSRC-5000SCA
rev. 2.2 |

<<Interface>>
AggregateDevice

Figure 3-19. Device Interface UML

3.1.3.24.3 Types.
3132431 InvaidState.

The InvalidState exception indicates that the device is not capable of the behavior being
attempted due to the state the Deviceisin. An example of such behavior is allocateCapacity.

exception InvalidState{string neg;};

3.1.3.2.4.3.2 InvalidCapacity.

The InvalidCapacity exception returns the capacities that are not valid for this device.

exception InvalidCapacity{string nmsg; Properties capacities;};

3-63

M SRC-5000SCA
rev. 2.2

3.1.3.2.4.3.3 AdminType.

Thisisa CORBA IDL enumeration type that defines a Device's administrative states. The
administrative state indicates the permission to use or prohibition against using the Device.

enum Adni nType

LOCKED,
SHUTTI NG_DOWWN,
UNLOCKED

b

3.1.3.24.3.4 Operationa Type.

Thisisa CORBA IDL enumeration type that defines a Device's operational states. The
operational state indicates whether or not the object is functioning.

enum Qper ati onal Type

ENABLED,
DI SABLED

};

3.1.3.2.435 UsageType.

Thisisa CORBA IDL enumeration type that defines the Device' s usage states. The usage state
indicates which of the following statesaDeviceisin:

* IDLE-notinuse

* ACTIVE —in use, with capacity remaining for allocation, or

* BUSY —inuse, with no capacity remaining for allocation
enum UsageType

| DLE,
ACTI VE,
BUSY

b

3.1.3.24.4 Attributes.
3.1.3.24.4.1 usageState.
The readonly usageState attribute shall contain the Device' s usage state (IDLE, ACTIVE, or

BUSY, see Figure 3-21). UsageState indicates whether or not adeviceisactively inuse at a
specific instant, and if so, whether or not it has spare capacity for allocation at that instant.

Whenever the usageState attribute changes, the Device shall send an event to the Incoming
Domain Management event channel with event data consisting of a StateChangeEventType. The
event datawill be populated as follows:

1. The producerld field shall be the identifier attribute of the Device.

2. Thesourceld field shall be the identifier attribute of the Device.

3. The stateChangeCategory field shall be USAGE_STATE_EVENT.

4. The stateChangeFrom and stateChangeTo fields shall reflect the usageState attribute
value before and after the state change, respectively.

3-64

MSRC-5000SCA
rev. 2.2 |

readonly attribute UsageType usageSt at e;

3.1.3.24.42 adminState.

The administrative state indicates the permission to use or prohibition against using the device.
The adminState attribute shall contain the device' s admin state value. The adminState attribute
shall only allow the setting of LOCKED and UNLOCKED values, where setting “LOCKED” is
only effective when the adminState attribute value is UNLOCKED, and setting “UNLOCKED”
isonly effective when the adminState attribute value is LOCKED or SHUTTING_DOWN.
Illegal state transitions commands are ignored.

The adminState attribute, upon being commanded to be LOCKED, shall transition from the
UNLOCKED to the SHUTTING_DOWN state and set the adminState to LOCKED for its entire
aggregation of Devices (if it has any). The adminState shall then transition to the LOCKED state
when the Device s usageState is IDLE and its entire aggregation of Devices are LOCKED. Refer
to Figure 3-19 for an illustration of the above state behavior.

Whenever the adminState attribute changes, the Device shall send an event to the Incoming
Domain Management event channel with event data consisting of a StateChangeEventType. The
event datawill be populated as follows:

1. Theproducerld field shall be the identifier attribute of the Device.

2. Thesourceld field shall be the identifier attribute of the Device.

3. The stateChangeCategory field shall be ADMINISTRATIVE_STATE_EVENT.

4. The stateChangeFrom and stateChangeTo fields shall reflect the adminState attribute
value before and after the state change, respectively.

attribute Adm nType adm nStat e;

3-65

M SRC-5000SCA
rev. 2.2

upon startup

UNLOCKED

/

adminState(
LOCKED) adminState(UNLOCKED)

adminState(

‘ SHUTTING_DOWN
UNLOCKED)

Usage State = IDLE and
its devices' adminState =
LOCKED

[LOCKED]

Figure 3-20. State Transition Diagram for adminState

3.1.3.24.4.3 operationa State.
The readonly operational State attribute shall contain the device's operational state (ENABLED
or DISABLED). The operational state indicates whether or not the device is functioning.

Whenever the operational State attribute changes, the Device shall send an event to the Incoming
Domain Management event channel with event data consisting of a StateChangeEventType. The
event datawill be populated as follows:

1. Theproducerld field shall be the identifier attribute of the Device.

2. Thesourceld field shall be the identifier attribute of the Device.

3. The stateChangeCategory field shall be OPERATIONAL_STATE_EVENT.

4. The stateChangeFrom and stateChangeTo fields shall reflect the operational State
attribute value before and after the state change, respectively.

readonly attribute Qperational Type operational State;

3.1.3.24.4.4 softwareProfile.
The softwareProfile attribute is the XML software description for this logical Device.

The readonly softwareProfile attribute shall contain either a profile DTD element with afile
reference to the SPD profile file or the XML for the SPD profile. Files referenced within the
softwareProfile are obtained via the FileManager.

3-66

MSRC-5000SCA
rev. 2.2 |

readonly attribute string softwareProfile;

3132445 labd.

The readonly label attribute shall contain the Device' slabel. Thelabd attributeis the
meaningful name given to aDevice. The attribute could convey location information within the
system (e.g., audiol, seriall, etc.).

readonly attribute string | abel;

3.1.3.24.46 compositeDevice.

The readonly compositeDevice attribute shall contain the object reference of the
aggregateDevice, which this Device is associated with or anil CORBA object referenceif no
association exists.

readonly attribute AggregateDevice conpositeDevice;

3.1.3.24.5 Operations.

3.1.3.24.5.1 allocateCapacity.

3.1.32451.1 Brief Rationale.

The allocateCapacity operation provides the mechanism to request and allocate capacity from
the Device.

31324512 Synopsis.

bool ean al | ocat eCapacity(in Properties capacities) raises (InvalidCapacity,
InvalidState);

31324513 Behavior.

The allocateCapacity operation shall reduce the current capacities of the Device based upon the
input capacities parameter, when the Device' s adminState is UNLOCKED, Device's
operational State is ENABLED, and Device' s usageState is not BUSY ..

The allocateCapacity operation shall set the Device's usageState attribute to BUSY, when the
Device determinesthat it is not possible to allocate any further capacity. The allocateCapacity
operation shall set the usageState attribute to ACTIVE, when capacity is being used and any
capacity is still available for alocation (reference Figure 3-21).

31324514 Returns.

The allocateCapacity operation shall return “True”, if the capacities have been allocated, or
“False’, if not alocated.

31324515 ExceptiongdErrors.

The allocateCapacity operation shall raise the InvalidCapacity exception, when the capacities are
invalid or the capacity values are the wrong type or ID.

The allocateCapacity operation shall raise the InvalidState exception, when the Device's
adminState is not UNLOCKED or operational State is DISABLED.

3-67

M SRC-5000SCA
rev. 2.2

3.1.3.2.4.5.2 deallocateCapacity.

31324521 Brief Rationae.

The deallocateCapacity operation provides the mechanism to return capacities back to the
Device, making them available to other users.

3.1.3.24522 Synopss.

voi d deal | ocateCapacity(in Properties capacities) raises (InvalidCapacity,
InvalidState);

31324523 Behavior.

The deallocateCapacity operation shall adjust the current capacities of the Device based upon the
input capacities parameter.

The deallocateCapacity operation shall set the usageState attribute to ACTIVE when, after
adjusting capacities, any of the Device's capacities are till being used.

The deallocateCapacity operation shall set the usageState attribute to IDLE when, after adjusting
capacities, none of the Device's capacities are till being used.

The deallocateCapacity operation shall set the adminState attribute to LOCKED as specified in

3.1.3.24.4.2.
upon startup
IDLE
all capacities capacities in use
are unused and available
all capacities no more
are unused ACTIVE capacities can
be allocated
capacities in
use and no more capacities
available can be allocated
[BUSY |

)

Figure 3-21. State Transition Diagram for allocateCapacity and deall ocateCapacity

31324524 Returns.
This operation does not return any value.

3-68

MSRC-5000SCA
rev. 2.2 |

3.1.324525 ExceptiongErrors.

The deallocateCapacity operation shall raise the InvalidCapacity exception, when the capacity
ID isinvalid or the capacity value is the wrong type. The InvalidCapacity exception will state
the reason for the exception.

The deallocateCapacity operation shall raise the InvalidState exception, when the Device's
adminState is LOCKED or operationa State is DISABLED.

3.1.3.245.3 releaseObject.

3.1.324531 Description.

This section describes additional release behavior for alogical Device.

31324532 Synopsis.

void rel ease(bj ect() raises (Rel easeError);

31324533 Behavior.
The following behavior isin addition to the LifeCycle releaseObject operation behavior.
The releaseObject operation shall call the releaseObject operation on all of the Device's

aggregated Devices (i.e., those Devices that are contained within the AggregateDevice' s devices
attribute).

The releaseObject operation shall transition the Device' s adminState to SHUTTING_DOWN
state, when the Device' s adminState is UNLOCKED.

The releaseObject operation shall cause the Device to be unavailable (i.e., released from the
CORBA environment, and its logical Device's process terminated on the OS when applicable),
when the Device' s adminState transitions to LOCKED, meaning its aggregated Devices have
been removed and the Device' s usageState is IDLE.

The releaseObject operation shall cause the removal of its Device from the Device's
compositeDevice.

The releaseObject operation shall unregister its Device from its DeviceManager.

The following four figures (3-22, 3-23, 3-24, and 3-25) depict different release scenarios
depending on the type of Device and the state the Deviceisin.

3-69

M SRC-5000SCA
rev. 2.2

. Comm User [A0dregated Device | | Aqgregated Device \Composite Device @ = B CORBA ORB Operating
E— : Device Process/Thread AdgaregateDevice DeviceManager | | DomainManager System

L
1: releaseObject()

| ‘ ‘ ‘ ‘
3: unJegisterDevice(in De]ige)

4: unregisterDevice(in Device)

5: deactiva‘lte Device senant objgct from ORB ‘
\ \
‘ / After the deactivation of the Device Servant from ﬁ

2: remoweDevice(in Device)

the ORB, the process/thread can be terminated.

T ‘ / ‘ 6: terminate DevicL thread/process erm os ‘ ‘

o N IS e E B

1 1 1
For this scenario, the aggregated Device's
adminState equals LOCKED and the Device has

been requested to terminate. How a Device

indicates to its thread/process to terminate is

implementation specific.

Figure 3-22. Release Aggregated Device Scenario

Composite Device
Process/Thread

Released Composite Device
AdggregateDevice

Agaregated

: Device Device : Device

Comm User Composite Device
— Processes/Threads

‘ Adggregated Device

CORBA ORB Operating
System

il
1: releaseObject() ‘

2: releaseObject(L ‘ ‘ ‘ ‘ ‘ ‘
3: remoweDevice(in Device)

Step 2 is done for each ‘ 4: unregisterDevice(in Device) /IT‘ unreg\slerDevl e(in Device) ‘ ‘
Hosted On De

‘ 6: dLactwa(e the Device servant|object from the ORB

T T T /U ‘
|

‘ 7: terminate Deyice thread/process fom PS |

/ 8: unregisterDelice(in Device) lo sterDevibe(in Device) ‘ ‘
<

— T

How a Device informs its process to

tefminate is tion specific. ﬁ
10: deactivate the Device sewvant obj

‘ 1m’mmewread/pwc%ss from OS ‘ /IT‘ ‘

lect from the ORB|

T For this scenario, all Devices' 1 H ‘ ‘ ‘

adminState equals LOCKED.

Figure 3-23. Release Composite Device Scenario

3-70

MSRC-5000SCA
rev. 2.2 |

Adgregated Device.
Processes/Threads

Composite Device:
teD

[o | B CoreaORe | [Operating
\ | | comsintisnscer i

‘ 5 unvegls!evDev\%e(m Device)
/L

fom OS ‘
I

Comm User | Composite & Aqaregated Agaregated Composite & Agaregated
Device : Device Devices : Device | | Device Process/Thread

-
1 releaseObject()

Released Composite & Agaregated
De D¢

2: releaseObject()

Step 2 is done for each
Hosted On Device

3; remoLDe\nce(m Device) ‘

‘ 4 unregmemev.cegnuw/:uj

10 unregws\%rDemceﬁn Device)

6: deactivate Devge senant object fom ORB.

removeDevice(in Devic

12: deactivate|peice senant object fom ORB |

unregisterDevice(ih Device)
[1 umeg.s‘ewée(m beuce)

‘ 7: terminate Je\nce thread/process

13: terminate Device threadiprocess fom 0S

|
|
|
j
|

|
|
.
|
|
|
]

‘a
L For this scenario, all Devices' 1N ‘
U adminState equals LOCKED.
How a Dece informs its process to 1N
terminate s implementation specific.

Figure 3-24. Release Composite & Aggregated Device Scenario

Composite Device Adgagregated
: Device Device : Device

: Comm User

1: releaseObject() ‘

2: releaseObject() ‘

N]

|
T N |
| N\ |

| |
In this scenario, no device processes are terminated or device
objects deactivated from the ORB since the Devices'
adminState equals SHUTTING_DOWN. A Device is in
SHUTTING_DOWN state when the usageState is not IDLE.

Figure 3-25. Release Composite Devicein SHUTTING_DOWN State Scenario

371

M SRC-5000SCA
rev. 2.2

31324534 Returns.
The releaseObject operation does not return a value.

3.1.324535 ExceptiongErrors.

The releaseObject operation shall raise the ReleaseError exception when releaseObject is not
successful in releasing alogical Device dueto internal processing errors that occurred within the
Device being released.

3.1.3.25 LoadableDevice.

3.1.3.25.1 Description.

This interface extends the Device interface by adding software |oading and unloading behavior to
aDevice.

313252 UML.

The LoadableDevice Interface UML is depicted in Figure 3-26 below.

3-72

<<Interface>>
Device

wusageState : UsageType
gadminState : AdminType
goperationalState : OperationalType
sisoftwareProfile : string

«label : string

ccompositeDevice : AggregateDevice

®allocateCapacity()
$deallocateCapacity()

MSRC-5000SCA
rev. 2.2 |

<<Interface>>
LoadableDevice

®load(fs : in FileSystem, fileName : in string, loadKind : in LoadType) : wid
Funload(fileName : in string) : woid

/
/

<<CORBAEXxception>>
InvalidFileName

\

<<|nterface>>
FileSystem

Figure 3-26. LoadableDevice Interface UML

3.1.3.25.3 Types.
3.1.3.2531 LoadType.

The LoadType defines the type of load to be performed. The load types are in accordance with
the code element within the softpkg element’ s implementation element, which is defined in

Appendix D.2.1.

enum LoadType
{
KERNEL _MODULE,
DRI VER,
SHARED LI BRARY,

3-73

M SRC-5000SCA
rev. 2.2

EXECUTABLE
H
3.1.3.25.3.2 InvaidLoadKind.

The InvalidLoadKind exception indicates that the Device is unable to load the type of file
designated by the loadKind parameter.

exception InvalidLoadKi nd{};

3.1.3.25.3.3 LoadFail.

The LoadFail exception indicates that the Load operation failed due to device dependent reasons.
The LoadFail exception indicates that an error occurred during an attempt to load the device. The
error number shall indicate an ErrorNumberType value (e.g. EACCES, EAGAIN, EBADF,
EINVAL, EMFILE, ENAMETOOLONG, ENOENT, ENOMEM, ENOSPC, ENOTDIR). The
message is component-dependent, providing additional information describing the reason for the
error.

exception LoadFail { ErrorNunmber Type errorNunber; string nsg; };

3.1.3.2.5.4 Attributes.
N/A

3.1.3.2.5.5 Operations.
3.1.3.2551 load.
3.1.3.2551.1 Brief Rationale.

The load operation provides the mechanism for loading software on a specific device. The
loaded software may be subsequently executed on the Device, if the Deviceisan
ExecutableDevice.

3.13.2551.2 Synopss.

void load(in FileSystemfs, in string fileName, in LoadType | oadKi nd)
raises (lnvalidState, InvalidLoadKind, InvalidFileNane, LoadFail);

3.1.3.25513 Behavior.

The load operation shall load afile on the specified device based upon the input loadKind and
fileName parameters using the input FileSystem parameter to retrieve thefile.

The load operation shall support the load types as stated in the Device' s software profile
LoadType alocation properties.

The load operation shall keep track of the number of times afile has been successfully loaded.
31325514 Returns.
This operation does not return any value.

31325515 ExceptiongdErrors.

The load operation shall raise the InvalidState exception when the Device' s adminState is not
UNLOCKED or operational State is DISABLED.

The load operation shall raise the InvalidLoadKind exception when the input loadKind
parameter is not supported.

3-74

MSRC-5000SCA
rev. 2.2 |

The load operation shall raise the InvalidFileName exception when the file designated by the
input filename parameter cannot be found.

The load operation shall raise the LoadFail exception when an attempt to load the deviceis
unsuccessful.

3.1.3.255.2 unload.

31325521 Brief Rationae.
The unload operation provides the mechanism to unload software that is currently loaded.

31325522 Synopss.
void unload(in string fileNane) raises (InvalidState, InvalidFileNanme);

3.1.3.25523 Behavior.

The unload operation shall decrement the load count for the input filename parameter by one.
The unload operation shall unload the application software on the device based on the input
fileName parameter, when the file'sload count equals zero.

31325524 Returns.
This operation does not return avalue.

3.1.325525 ExceptiongErrors.

The unload operation shall raise the InvalidState exception when the Device' s adminState is
LOCKED or its operational State is DISABLED.

The unload operation shall raise the InvalidFileName exception when the file designated by the |
input filename parameter cannot be found.

3.1.3.2.6 ExecutableDevice.

3.1.3.26.1 Description.

This interface extends the LoadableDevice interface by adding execute and terminate behavior to
aDevice.

3.1.3.2.6.2 UML.
The ExecutableDevice Interface UML is depicted in Figure 3-27.

3-75

M SRC-5000SCA
rev. 2.2

<<Interface>>
LoadableDevice

®load()
Sunload()

f

<<Interface>>
ExecutableDevice

Fexecute(name : in string, options : in Properties, parameters : in Properties) : ProcessID_Type
Sterminate(processld : in ProcessID_Type) : void

/ N\
S AN
<<COI;BA Tri/.pedef >> <<CORBA Exception>>
operties InvalidFileName
E8msg : string

Figure 3-27. ExecutableDevice Interface UML

3.1.3.2.6.3 Types.
3.1.3.2.6.3.1 InvalidProcess.

The InvalidProcess exception indicates that a process, as identified by the processiD parameter,
does not exist on this device. The error number shall indicate an ErrorNumberType value (e.g.,
ESRCH, EPERM, EINVAL). The message is component-dependent, providing additional
information describing the reason for the error.

exception InvalidProcess{ ErrorNunberType errorNunber; string nsg; };

3.1.3.2.6.3.2 InvaidFunction.

The InvalidFunction exception indicates that a function, asidentified by the input name
parameter, hasn’t been loaded on this device.

exception InvalidFunction {};

3.1.3.2.6.3.3 ProcessID_Type.

This type defines a process number within the system. Process number is unique to the
Processor operating system that created the process.

t ypedef unsigned | ong Processl D Type;

3-76

MSRC-5000SCA
rev. 2.2 |

3.1.3.2.6.3.4 InvaidParameters.

The InvalidParameters exception indicates the input parameters are invalid on the execute
operation. The InvalidParameters exception is raised when there are invalid execute parameters.
Each parameter's ID and value must be avalid string type. TheinvalidParmsisalist of invalid
parameters specified in the execute operation.

exception I nvalidParaneters{ Properties invalidParnms;};

3.1.3.2.6.3.5 InvaidOptions.

The InvalidOptions exception indicates the input options are invalid on the execute operation.
TheinvalidOptsisalist of invalid options specified in the execute operation.

exception InvalidOptions{ Properties invalidOpts;};

3.1.3.26.36 STACK_SIZE ID.

The STACK_SIZE ID istheidentifier for the ExecutableDevice' s execute options parameter.
The value for a stack size shall be an unsigned long.

Constant string STACK SIZE_|ID = “STACK_SI ZE";

3.1.3.26.3.7 PRIORITY_ID.

The PRIORITY _ID istheidentifier for the ExecutableDevice' s execute options parameters. The
value for apriority shall be an unsigned long.

Constant string PRRORITY_ID = “PRIORI TY";

3.1.3.2.6.3.8 ExecuteFail.

The ExecuteFail exception indicates that the Execute operation failed due to device dependent
reasons. The ExecuteFail exception indicates that an error occurred during an attempt to invoke
the execute function on the device. The error number shall indicate an ErrorNumberType value
(e.g. EACCES, EBADF, EINVAL, EIO, EMFILE, ENAMETOOLONG, ENOENT, ENOMEM,
ENOTDIR). The message is component-dependent, providing additional information describing
the reason for the error.

exception ExecuteFail{ ErrorNunber Type errorNumber; string nmsg; };

3.1.3.2.6.4 Attributes.
N/A.

3.1.3.26.5 Operations.

3.1.3.2.6.5.1 execute.

31326511 Brief Rationae.

The execute operation provides the mechanism for starting up and executing a software
process/thread on adevice.

31326512 Synopsis.

Processl D Type execute(in string name, in Properties options, in Properties
paraneters) raises (lnvalidState, InvalidFunction, InvalidParaneters,
I nval i dOptions, InvalidFileNane, ExecuteFail);

377

M SRC-5000SCA
rev. 2.2

3.1.3.26513 Behavior.

The execute operation shall execute the function or file identified by the input name parameter
using the input parameters and options parameters. Whether the input name parameter isa
function or afile name is device-implementation-specific.

The execute operation shall convert the input parameters (id/value string pairs) parameter to the
standard argv of the POSIX exec family of functions, where argv(0) is the function name. The
execute operation shall map the input parameters parameter to argv starting at index 1 asfollows,
argv (1) mapsto input parameters (0) id and argv (2) maps to input parameters (0) value and so
forth. The execute operation passes argv through the operating system “execute” function.

The execute operation input options parameters are STACK_SIZE 1D and PRIORITY _ID. The
execute operation shall use these options, when specified, to set the operating system’s
process/thread stack size and priority, for the executable image of the given input name
parameter.

31326514 Returns.

The execute operation shall return a unique processiD for the process that it created or a
processiD of minus 1 (-1) when a processis not created.

3.1.3.26.515 ExceptiongErrors.

The execute operation shall raise the InvalidState exception when the Device' s adminState is not
UNLOCKED or operational State is DISABLED.

The execute operation shall raise the InvalidFunction exception when the function indicated by
the input name parameter does not exist for the Device.

The execute operation shall raise the InvalidFileName exception when the file name indicated by
the input name parameter does not exist for the Device.

The execute operation shall raise the InvalidParameters exception when the input parameters
parameter item ID or value are not string types.

The execute operation shall raise the InvalidOptions exception when the input options parameter
does not comply with sections 3.1.3.2.6.3.5 STACK_SIZE ID and 3.1.3.2.6.3.6 PRIORITY _ID.

The execute operation shall raise the ExecuteFail exception when the operating system “execute’
function for the device is not successful.

3.1.3.2.6.5.2 terminate.

3.1.3.26.521 Brief Rationale.

The terminate operation provides the mechanism for terminating the execution of a
process/thread on a specific device that was started up with the execute operation.

31326522 Synopsis.

void termnate(in ProcesslD Type processld) raise (InvalidProcess,
InvalidState);

31326523 Behavior.

The terminate operation shall terminate the execution of the process/thread designated by the
processld input parameter on the Device.

3-78

MSRC-5000SCA
rev. 2.2 |

31326524 Returns.
This operation does not return avalue.

3.1.3.26.525 ExceptiongErrors.
The terminate operation shall raise the InvalidState exception when the Device' s adminState is
LOCKED or operational State is DISABLED.

The terminate operation shall raise the InvalidProcess exception when the processld does not
exist for the Device.

3.1.3.2.7 AggregateDevice.

3.1.3.2.7.1 Description.

The AggregateDevice interface provides aggregate behavior that can be used to add and remove
Devices from an aggregate Device. Thisinterface can be provided viainheritance or as a
“provides port” for any Device that is capable of an aggregate relationship. Aggregated Devices
use thisinterface to add or remove themselves from composite Devices when being created or
torn-down.

3.1.3.2.7.2 UML.
The AggregateDevice Interface UML is depicted in Figure 3-28.

<<Interface>>
AggregateDevice

gdevices : DeviceSequence

$addDevice(associatedDevice : in Device) : woid
$remowe Device(as sociatedDevice : in Device) : woid

2
/ | N
/ N
/ | b
: N\
<<CORBAEXxception>> <<Interface>> <<CORBATypedef>>
InvalidObjectReference Device DeviceSequence

E8msg : string

Figure 3-28. AggregateDevice Interface UML

3.1.3.2.7.3 Types.
N/A.

3-79

M SRC-5000SCA
rev. 2.2

3.1.3.2.7.4 Attributes.
3.1.3.2.7.4.1 devices.

The readonly devices attribute shall contain alist of devicesthat have been added to this Device
or a sequence length of zero if the Device has no aggregation relationships with other Devices.

readonly attribute DeviceSequence devi ces;

3.1.3.2.7.5 Operations.

3.1.3.2.7.5.1 addDevice.

31327511 Brief Rationale.

The addDevice operation provides the mechanism to associate a Device with another Device.
When a Device changes state or it is being torn down, its associated Devices are affected.

3.132751.2 Synopss.
voi d addDevi ce(in Device associ at edDevi ce) raises (InvalidojectReference);

31327513 Behavior.

The addDevice operation shall add the input associatedDevice parameter to the
AggregateDevice' s devices attribute when the associatedDevice does not exist in the devices
attribute. The associatedDevice isignored when duplicated.

The addDevice operation shall write a FAILURE_ALARM log record, upon unsuccessful adding
of an associatedDevice to the AggregateDevice' s devices attribute.

31327514 Returns.
This operation does not return any value.

31327515 ExceptiondErrors.

The addDevice operation shall raise the CF InvalidObjectReference when the input
associatedDevice isanil CORBA object reference.

3.1.3.2.7.5.2 removeDevice.

3.1.3.27521 Brief Rationale.

The removeDevice operation provides the mechanism to disassociate a Device from another
Device.

31327522 Synopsis.
voi d renmoveDevi ce(in Device associ atedDevi ce) raises (InvalidObjectReference

)

3.1.3.2.7523 Behavior.

The removeDevice operation shall remove the input associatedDevice parameter from the
AggregateDevice' s devices attribute.

The removeDevice operation shall writea FAILURE_ALARM log record, upon unsuccessful
removal of the associatedDevice from the AggregateDevice' s devices attribute.

3-80

MSRC-5000SCA
rev. 2.2 |

31327524 Returns.
This operation does not return any value.

3.1.327525 Exceptiong/Errors.

The removeDevice operation shall raise the CF InvalidObjectReference when the input
associatedDevice isanil CORBA object reference or does not exist in the AggregateDevice's
devices attribute.

3.1.3.2.8 DeviceManager.
3.1.3.28.1 Description.

The DeviceManager interface is used to manage a set of logical Devices and services. The
interface for a DeviceManager is based upon its attributes, which are:

1. Device Configuration Profile - amapping of physical device locations to meaningful
labels (e.g., audiol, seriall, etc.), aong with the Devices and services to be deployed.

File System - the FileSystem associated with this DeviceManager .

Device Manager Identifier - the instance-unique identifier for this DeviceManager.
Device Manager Label - the meaningful name given to this DeviceManager.
Registered Devices - alist of Devices that have registered with this DeviceManager .

o A W N

Registered Services - alist of Servicesthat have registered with this DeviceManager

3-81

3.1.3.282 UML.

<<Interface>>

PropertySet <<Interface>>
PortSupplier

Fconfigure()
Lquery() BoetPort()

<<Interface>>
DeviceManager

wdeviceConfigurationProfile : string
wfileSys : FileSystem

widentifier : string

wlabel : string

wregisteredDevices : DeviceSequence
wregisteredSenices : SeniceSequence

WregisterDevice(registeringDevice : in Device) : woid
SunregisterDevice(registeredDevice : in Device) : void

®shutdown() : void

WregisterSenice(registeringSenice : in Object, name : in string) : void
BunregisterSenice(registeredSenice : in Object, name : in string) : woid
FgetComponentimplementationld(componentinstantiationid : in string) : string

/
/ ! \ A

M SRC-5000SCA
rev. 2.2

<<Interface>> <<CORBATypedef>> <<Interface>> <<CORBAEXxception>>
InvalidO bjectReference

FileSystem DeviceSequence Device

<2Msg : string

Figure 3-29. DeviceManager UM L

3.1.3.2.83 Types.

This section describes the types defined in the interface DeviceManager .

3.1.3.283.1 ServiceType.

This structure provides the object reference and name of services that have registered with the
DeviceManager .

struct ServiceType{

b

hj ect servicebj ect;
string servi ceNang;

3-82

MSRC-5000SCA
rev. 2.2 |

3.1.3.2.8.3.2 ServiceSequenceType.

This type provides an unbounded sequence of ServiceType structures for services that have
registered with the DeviceManager.

typedef sequence <ServiceType> Servi ceSequence;

3.1.3.2.8.4 Attributes.
3.1.3.2.84.1 identifier.

The readonly identifier attribute shall contain the instance-unique identifier for a
DeviceManager. The identifier shall beidentical to the deviceconfiguration element id attribute
of the DeviceManager’s Device Configuration Descriptor (DCD) file.

readonly attribute string identifier;

3.1.3.2.84.2 label.

The readonly label attribute shall contain the DeviceManager’s label. The label attribute isthe
meaningful name given to a DeviceManager.

readonly attribute string | abel;

3132843 fileSys.

The readonly fileSys attribute shall contain the FileSystem associated with this DeviceManager
or anil CORBA aobject reference if no FileSystem is associated with this DeviceManager .

readonly attribute FileSystemfil eSys;

3.1.3.2.8.4.4 deviceConfigurationProfile.
The readonly deviceConfigurationProfile attribute contains the DeviceManager’ s profile.

The readonly deviceConfigurationProfile attribute shall contain either a profile element with a
file reference to the DeviceManager’ s Device Configuration Descriptor (DCD) profile or the
XML for the DeviceManager’s DCD profile. Filesreferenced within the profile are obtained
from aFileSystem.

readonly attribute string deviceConfigurationProfile;

3.1.3.28.45 registeredDevices.

The readonly registeredDevices attribute shall contain alist of Devices that have registered with
this DeviceManager or a sequence length of zero if no Devices have registered with the
DeviceManager .

readonly attribute Devi ceSequence regi steredDevi ces;

3.1.3.28.4.6 registeredServices.

The readonly registeredServices attribute shall contain alist of Services that have registered with
this DeviceManager or a sequence length of zero if no Services have registered with the
DeviceManager .

readonly attribute ServiceSequence regi steredServices;

3-83

M SRC-5000SCA
rev. 2.2

3.1.3.2.85 Genera Behavior.

The DeviceManager upon start up shall register itself with aDomainManager. This requirement
allows the system to be developed where at a minimum only the DomainManager’ s component
reference needs to be known. A DeviceManager shall use the DeviceManager’s
deviceConfigurationProfile attribute for determining:

1. Servicesto be deployed for this DeviceManager (for example, log(s)),

N

Devicesto be created for this DeviceManager (when the DCD deployondevice
element is not specified then the DCD componentinstantiation element is deployed on
the same hardware device as the DeviceManager),

Devices to be deployed on (executing on) another Device,

Devices to be aggregated to another Device,

Mount point names for FileSystems,

The DCD’sid attribute for the DeviceManager’ s identifier attribute value, and
The DCD’s name attribute for the DeviceManager’ s label attribute value.

N o g A~ W

The DeviceManager shall create FileSystem components implementing the FileSystem interface
for each OSfile system. If multiple FileSystems are to be created, the DeviceManager shall
mount created FileSystems to a FileManager component (widened to a FileSystem through the
FileSys attribute). Each mounted FileSystem name must be unique within the DeviceManager .

The DeviceManager shall supply execute operation parameters (IDs and format values) for a
Device consisting of:

A. DeviceManager IOR —TheID is“DEVICE_MGR_IOR” and the value is a string that
is the DeviceManager stringified IOR.

B. Profile Name—ThelID is“PROFILE_NAME” and the valueis a CORBA string that
isthe full mounted file system file path name.

C. Deviceldentifier —TheID is“DEVICE_ID” and the value is a string that corresponds
to the DCD componentinstantiation id attribute.

D. DevicelLabel —ThelID is“DEVICE_LABEL” and the value is a string that
corresponds to the DCD componentinstantiation usage element. This parameter is
only used when the DCD componentinstantiation usage element is specified.

E. Composite Device IOR - TheID is*“Composite DEVICE_IOR” and thevalueisa
string that is an AggregateDevice stringified IOR. This parameter is only used when
the DCD componentinstantiation element is a composite part of another
componentinstantiation element.

F. The execute (“execparam”) properties as specified in the DCD for a
componentinstantiation element. The DeviceManager shall pass the
componentinstantiation element “execparam” properties that have values as

3-84

MSRC-5000SCA
rev. 2.2 |

parameters. The DeviceManager shall pass “execparam” parameters IDs and values
as string values.

The DeviceManager shall use the componentinstantiation element’s SPD implementation code’s
stacksize and priority elements, when specified, for the execute options parameters.

The DeviceManager shall initialize and configure logical Devices that are started by the
DeviceManager after they have registered with the DeviceManager. The DeviceManager shall
configure a DCD’ s componentinstantiation element provided the componentinstantiation element
has “configure”’ readwrite or writeonly properties with values. Figure 3-30 depictsa
DeviceManager startup scenario. If a Serviceis deployed by the DeviceManager, the
DeviceManager shall supply execute operation parameters (IDs and format values) consisting of:

a. DeviceManager IOR-ThelD is“DEVICE_MGR_IOR” and the value is a string that
isthe DeviceManager stringified IOR.

b. ServiceName—ThelD is“SERVICE_NAME" and the value is a string that
corresponds to the DCD componentinstantiation usagename element.

3-85

M SRC-5000SCA
rev. 2.2

Composite Device :

Log : Device
AggregateDevice

Node Boot Up ‘

‘ XML Parser

DeviceManager DomainManager

™M 1: create ‘
2: create FileSystel
PEa—
Log Executable
Parameters, Device
MGR IOR, Log Name
3: Parse DCD and $PD files 4/ ‘ ‘
/ - N
41 Iaunch/ | Device Executable Parameters, Device MGR
IOR, Composite Device IOR, Identifier, Label,
‘ /IT‘ Software Profile, User-Defined. Step 6 thru 9 is
done for each Device in the DCD file.
5: registerSer\d‘#e(in Object, in String) ‘ /
‘ / This step is optional, if
no relationship to an
/ Aggregated Device
6: launc|
7: addDevice(in DevicS) ‘
8: registerDevice(in Device)
‘ | ‘ ‘
| 9:initialize() | T ‘ ‘
| 10: configure(in Properties) | ‘ ‘
:L‘l: registerDeviceManager(in DeviceManager) | | |

Figure 3-30. DeviceManager Startup Scenario

3.1.3.2.8.6 Operations.

3.1.3.28.6.1 registerDevice.

3.13286.1.1 Brief Rationae.

The register Device operation provides the mechanism to register a Device with a
DeviceManager .

3.1.3286.1.2 Synopsis.

voi d regi sterDevice(in Device registeringDevice) raises (
I nval i dObj ect Ref erence);

3.1.3.286.1.3 Behavior.

The register Device operation shall add the input registeringDevice to the DeviceManager’s
registeredDevices attribute when the input registeringDevice does not already exist in the
registeredDevices attribute. The registeringDevice isignored when duplicated.

The register Device operation shall register the registeringDevice with the DomainManager when

the DeviceManager has already registered to the DomainManager and the registeringDevice has
been successfully added to the DeviceManager’ s registeredDevices attribute.

3-86

MSRC-5000SCA
rev. 2.2 |

The registerDevice operation shall writea FAILURE_ALARM log record to a
DomainManager’ s Log, upon unsuccessful registration of a Device to the DeviceManager’s
registeredDevices.

3.1.3286.14 Returns.

This operation does not return any value.

3.1.3.2.86.1.5 ExceptiongErrors.

The registerDevice operation shall raise the CF InvalidObjectReference when the input
registeringDevice isanil CORBA object reference.

3.1.3.2.8.6.2 unregisterDevice.

3.1.3.286.21 Brief Rationale.

The unregister Device operation unregisters a Device from a DeviceManager .
3.1.3.286.22 Synopsis.

voi d unregi sterDevice(in Device registeredDevice) raises (
I nval i dObj ect Ref erence);

3.13286.23 Behavior.

The unregister Device operation shall remove the input registeredDevice from the
DeviceManager’s registeredDevices attribute. The unregister Device operation shall unregister
the input registeredDevice from the DomainManager when the input registeredDeviceis
registered with the DeviceManager and the DeviceManager is not shutting down.

The unregister Device operation shall writea FAILURE_ALARM log record, when it cannot
successfully remove a registeredDevice from the DeviceManager’ s registeredDevices.
3.1.3.28.6.24 Returns.

This operation does not return any value.

3.1.32.86.25 ExceptiongErrors.

The unregister Device operation shall raise the CF InvalidObjectReference when the input
registeredDevice isanil CORBA object reference or does not exist in the DeviceManager’s
registeredDevices attribute.

3.1.3.2.8.6.3 registerService.

3.1.3.286.31 Brief Rationae.

The register Service operation provides the mechanism to register a Service with a
DeviceManager.

3.1.3.286.32 Synopsis.
voi d regi sterService(in Object registeringService, in string name) raises (

I nval i dObj ect Ref erence);
3.1.3.28.6.3.3 Behavior.

The register Service operation shall add the input registeringService to the DeviceManager’s
registeredServices attribute when the input registeringService does not already exist in the
registeredServices attribute. The registeringService isignored when duplicated.

3-87

M SRC-5000SCA
rev. 2.2

The register Service operation shall register the registeringService with the DomainManager
when the DeviceManager has aready registered to the DomainManager and the
registeringService has been successfully added to the DeviceManager’ s registeredServices
attribute.

The register Service operation shall writeaFAILURE_ALARM log record, upon unsuccessful
registration of a Service to the DeviceManager’ s registeredServices.

3.13286.34 Returns.
This operation does not return any value.

3.1.3.2.86.35 ExceptiongErrors.

The register Service operation shall raise the CF InvalidObjectReference exception when the
input registeringServiceisanil CORBA object reference.

3.1.3.2.8.6.4 unregisterService.

3.1.3.286.41 Brief Rationale.

The unregister Service operation unregisters a Service from a DeviceManager .
3.1.3.286.4.2 Synopsis.

voi d unregi sterService(in Object regi steredService) raises (
I nval i dObj ect Ref erence);
3.1.3.286.4.3 Behavior.

The unregister Service operation shall remove the input registeredService from the
DeviceManager’s registeredServices attribute. The unregister Service operation shall unregister
the input registeredService from the DomainManager when the input registeredServiceis
registered with the DeviceManager and the DeviceManager is not in the shutting down state.

The unregister Service operation shall writea FAILURE_ALARM log record, when it cannot
successfully remove a registeredService from the DeviceManager’ s registeredServices.

31328644 Returns.
This operation does not return any value.

3.1.3.28.6.45 ExceptiongErrors.

The unregister Service operation shall raise the CF InvalidObjectReference when the input
registeredServiceisanil CORBA object reference or does not exist in the DeviceManager’s
registeredServices attribute.

3.1.3.2.8.6.,5 shutdown.
3.1.3.28.6.51 Brief Rationae.
The shutdown operation provides the mechanism to terminate a DeviceManager.

3.1.3.286.52 Synopsis.
voi d shut down();

3.1.3.28.6.53 Behavior.
The shutdown operation shall unregister the DeviceManager from the DomainManager .

3-88

MSRC-5000SCA
rev. 2.2 |

The shutdown operation shall perform releaseObject on all of the DeviceManager’ s registered
Devices (DeviceManager’ s registeredDevices attribute).

The shutdown operation shall cause the DeviceManager to be unavailable (i.e. released from the
CORBA environment and its process terminated on the OS), when all of the DeviceManager’s
registered Devices are unregistered from the DeviceManager .

31328654 Returns.

This operation does not return any value.

3.1.3.2.86.55 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.3.2.8.6.6 getComponentl mplementationld.

3.13.28.6.6.1 Brief Rational.

The getComponentl mplementationld operation returns the SPD implementation ID that the
DeviceManager interface used to create a component.

3.1.3.2.86.6.2 Synopsis.
string get Conponent | npl ementationld (in string conmponentlnstantiationld);

3.1.3.2.8.6.6.3 Behavior.

The getComponent! mplementationld operation will return the SPD implementation element’s ID
attribute that matches the ID attribute of the SPD implementation element used to create the
component specified by the input componentlnstantiationld parameter.

3.1.3.2.8.6.6.4 Returns.

The getComponent! mplementationld operation shall return the SPD implementation element’s
ID attribute that matches the SPD implementation element used to create the component
identified by the input componentinstantiationld parameter. The

getComponentl mplementationld operation shall return an empty string when the input
componentlnstantiationld parameter does not match the ID attribute of any SPD implementation
element used to create the component.

3.1.3.2.86.6.5 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.3.3 Framework Services Interfaces.
Framework Services Interfaces shall be implemented using the CF IDL presented in Appendix C.

31331 File
3.1.3.3.1.1 Description.

The Fileinterface provides the ability to read and write files residing within a CF-compliant,
distributed FileSystem. A file can be thought of conceptually as a sequence of octets with a

current filePointer describing where the next read or write will occur. ThisfilePointer pointsto |
the beginning of the file upon construction of the file object. The File interface is modeled after
the POSIX/C fileinterface. (Reference File Interface UML in Figure 3-31.)

3-89

M SRC-5000SCA
rev. 2.2

313312 UML.

<<Interface>>
File

zfileName : string
«flePointer : unsigned long

®read(data : out OctetSequence, length : in unsigned long) : wid
Swrite(data : in OctetSequence) : wid

WsizeOf() : unsigned long

®close() : wid

SsetFilePointer(filePointer : in unsigned long) : woid

4 | AN
/ AN
L \/ 3
<<CORBAException>> <<CORBAEnum>> <<CORBATypedef>>
FileException ErrorNumberType OctetSequence

Figure 3-31. FileInterface UML

3.1.3.3.1.3 Types.
3.1.3.3.1.3.1 1OEXxception.

The IOException exception indicates an error occurred during aread or write operation to aFile.
The error number shall indicate an ErrorNumberType value (e.g., EFBIG, ENOSPC, EROFS).
The message is component-dependent, providing additional information describing the reason
for the error.

exception | Oexception{ ErrorNunber Type errorNumber; string nsg; };

3.1.3.3.1.3.2 InvalidFilePointer.

The InvalidFilePointer exception indicates the file pointer is out of range based upon the current
filesize.

exception InvalidFilePointer{};

3.1.3.3.1.4 Attributes.
3.1.3.3.1.41 fileName.

The readonly fileName attribute shall contain the file name given to the FileSystem open/create
operation. The syntax for afilename is based upon the UNIX operating system. That is, a

3-90

MSRC-5000SCA
rev. 2.2 |

sequence of directory names separated by forward slashes (/) followed by the base filename. The
fileName attribute will contain the filename given to the FileSystem open operation.

readonly attribute string fil eNane;

3.1.3.3.1.4.2 filePointer.

The readonly filePointer attribute shall contain the file position where the next read or write will
occur.

readonly attribute unsigned |ong fil ePointer;

3.1.3.3.1.5 Operations.

3.1.33.151 read.

3.1.3.3.151.1 Brief Rationale.

Applications require the read operation in order to retrieve data from remote files.
3.1.33.151.2 Synopsis.

voi d read(out OctetSequence data, in unsigned long |length) raises (
| OException);
31331513 Behavior.

The read operation shall read, from the referenced file, the number of octets specified by the
input length parameter and advance the value of the filePointer attribute by the number of octets
actually read. Theread operation shall read |less than the number of octets specified in the input-
length parameter, when an end of fileis encountered.

31331514 Returns.

The read operation shall return via the out Message parameter a CF OctetSequence that equals
the number of octets actually read from the File. If the filePointer attribute value reflects the end
of the File, the read operation shall return a O-length CF OctetSequence.

3.1.33.1515 ExceptiongErrors.

The read operation shall raise the IOException when aread error occurs.

3133152 write.
31331521 Brief Rationae.
Applications require the write operation in order to write data to remote files.

3.1.3.3.1522 Synopsis.
void wite(in CctetSequence data) raises (| OException);

31331523 Behavior.

The write operation shall write datato the file referenced. If the writeis successful, the write
operation shall increment the filePointer attribute to reflect the number of octets written. If the
write is unsuccessful, the filePointer attribute value shall maintain or be restored to its value prior
to the write operation call.

31331524 Returns.
This operation does not return any value.

3-91

M SRC-5000SCA
rev. 2.2

3.1.33.1525 ExceptiongErrors.
The write operation shall raise the IOException when awrite error occurs.

3.1.3.3.15.3 sizeOf.
3.1.3.3.1531 Brief Rationde.

An application may need to know the size of afilein order to determine memory allocation
requirements.

3.133.1532 Synopsis.
unsi gned long sizeO () raises (FileException);

3.1.3.3.1533 Behavior.

Thereis no significant behavior beyond the behavior described by the following section.
31331534 Returns.

The sizeOf operation shall return the number of octets stored in the file.

3.1.3.3.1535 ExceptiongErrors.

The sizeOf operation shall raise the CF FileException when afile-related error occurs (e.g., file
does not exist anymore).

3133154 close
31331541 Brief Rationae.
The close operation is needed in order to release file resources once they are no longer needed.

3.1.33.154.2 Synopsis.
void close() raises (FileException);

31331543 Behavior.

The close operation shall release any OE file resources associated with the component. The
close operation shall make the file unavailable to the component.

31331544 Returns.

This operation does not return any value.

3.1.33.1.545 ExceptiongErrors.

The close operation shall raise the CF FileException when it cannot successfully close the file.

3.1.3.3.1.55 setFilePointer.
3.1.33.1551 Brief Rationae.
The setFilePointer operation positions the file pointer where the next read or write will occur.

3.1.33.1552 Synopsis.

void setFilePointer(in unsigned long filePointer) raises (
I nval i dFi | ePoi nter, Fil eException);

3.1.33.1553 Behavior.
The setFilePointer operation shall set the filePointer attribute value to the input filePointer.

3-92

3.133.1554 Returns.
This operation does not return any value.

3.1.3.3.1.555 ExceptiongErrors.

The setFilePointer operation shall raise the CP FileException when the file pointer for the
referenced file cannot be set to the value of the input filePointer parameter. The setFilePointer
operation shall raise the InvalidFilePointer exception when the value of the filePointer parameter

exceeds thefile size.

3.1.3.3.2 FileSystem.
3.1.3.3.2.1 Description.

MSRC-5000SCA

rev. 2.2 |

The FileSystem interface defines CORBA operations that enable remote accessto aphysical file
system. (Reference FileSysteminterface UML in Figure 3-32.)

<<Interface>>
FileSystem

remowve(fileName : in string) : woid
®copy (sourceFileName : in string, destinationFileName : in string) : void
exists(fileName : in string) : boolean
HWist(pattern : in string) : FilelnformationSequence
#reate(fileName : in string) : File
Fopen(fileName : in string, read_Only : in boolean) : File
mkdir(directoryName : in string) : void
®rmdir(directoryName : in string) : void

Fuery (fileSystemProperties : inout Properties) : void

/ uses

/ 14
<<CORBAEXxception>>| | <<CORBAException>>| |<<Interface>>
InvalidFileName FileException File

N N
<<CORBATypedef>> <<CORBATypedef>>

StringSequence

Properties

3.1.33.22 UML.

3.1.3.3.2.3 Types.

Figure 3-32. FileSystem Interface UML

3.1.3.3.2.3.1 UnknownFileSystemProperties.
The UnknownFileSystemProperties exception indicates a set of properties unknown by the

component.

exception UnknownFi |l eSystenProperties {properties invalidProperties; };

3.1.3.3.2.3.2 fileSystemProperties Query Constants.

Constants are defined to be used for the query operation (see section 3.1.3.3.2.5.9).

const string SIZE =

“Sl ZE”;

3-93

M SRC-5000SCA
rev. 2.2

const string AVAI LABLE_SPACE = “ AVAI LABLE SPACE";

3.1.3.3.2.3.3 FilelnformationType.

The FilelnformationType indicates the information returned for afile. Not all the fieldsin the
FilelnformationType are applicable for all file systems. At a minimum, the FileSystem shall
support name, kind, and size information for afile. Examples of other file properties that can be
specified are created time, modified time, and last access time.

struct FilelnformationType

{

string nane;
Fil eType ki nd;
unsi gned | ong | ong si ze;
Properties fileProperties;

1

name: Thisfield indicates the simple name of thefile.

kind: Thisfield indicates the type of the file entry.

size: Thisfield indicates the size in octets.

3.1.3.3.2.3.4 FilelnformationSequence.

The FilelnformationSequence type defines an unbounded sequence of FilelnformationTypes.

typedef sequence<Fil el nformati onType>Fi | el nf or mati onSequence;

3.1.3.3.2.35 FileType.

The FileType indicates the type of file entry. A file system can have PLAIN or DIRECTORY
files and mounted file systems contained in a FileSystem.

Enum Fi | eType
PLAI N,

DI RECTORY,
FI LE_SYSTEM

s
3.1.3.3.236 CREATED TIME_ID.

The CREATED_TIME_ID istheidentifier for the created time file property. A created time
property indicates the time the file was created. The value for created time shall be unsigned long
long and measured in seconds since 00:00:00 UTC, Jan. 1, 1970.

Constant string CREATED TIME_|ID = “CREATED Tl ME";

3.1.3.3.23.7 MODIFIED_TIME_ID.

The MODIFIED_TIME_ID istheidentifier for the modified time file property. The modified
time property is the time the file data was last modified. The value for modified time property
shall be unsigned long long and measured in seconds since 00:00:00 UTC, Jan. 1, 1970.

Constant string MODI FI ED _TI ME_I D="MODI FI ED_TI ME”;

3-94

MSRC-5000SCA
rev. 2.2 |

3.1.33.238 LAST ACCESS TIME_ID.

The LAST_ACCESS TIME_ID istheidentifier for the last access time file property. The last
access time property is the time the file was last access (e.g. read). The value for last access time
property shall be unsigned long long and measured in seconds since 00:00:00 UTC, Jan. 1, 1970.

Constant string LAST_ACCESS Tl ME | D="LAST_ACCESS TI MVE’

3.1.3.3.2.4 Attributes.
N/A.

3.1.3.3.25 Operations.

3.1.3.3.251 remove.

3.1.33.251.1 Brief Rationale.

The remove operation provides the ability to remove afile from afile system.

3.1.33.251.2 Synopsis.

void remove(in string fileName) raises(FileException, InvalidFileNane);

31332513 Behavior.
The remove operation shall remove the file with the given filename.

31332514 Returns.
This operation does not return any value.

3.1.33.2515 ExceptiongErrors.

The remove operation shall raise the InvalidFileName exception when the filenameis not avalid |
filename or not an absol ute pathname.

The remove operation shall raise the CF FileException when afile-related error occurs.
3.1.3.3.25.2 copy.

3.1.3.3.2521 Brief Rationale.
The copy operation provides the ability to copy afile to another file.

3.1.33.2522 Synopsis.

void copy(in string sourceFileNanme, in string destinationFileNane) raises(
I nval i dFi | eNane, Fil eException);

3.1.3.3.2523 Behavior.

The copy operation shall copy the source file with the specified sourceFileName to the
destination file with the specified destinationFileName.

31332524 Returns.
This operation does not return any value.

31332525 ExceptiongErrors.
The copy operation shall raise the CF FileException when afile-related error occurs.

The copy operation shall raise the InvalidFileName exception when the filename isnot avalid |
file name or not an absolute pathname.

3-95

M SRC-5000SCA
rev. 2.2

3.1.3.3.253 exidts.
3.1.3.3.2531 Brief Rationale.
The exists operation provides the ability to verify the existence of afile within a FileSystem.

3.133.253.2 Synopsis.
bool ean exists(in string fileNane) raises(InvalidFileName);

31332533 Behavior.

The exists operation shall check to seeif afile exists based on the fileName parameter.
31332534 Returns.

The exists operation shall return Trueif the file exists, or Falseif it does not.

3.1.3.3.2535 ExceptiongErrors.

The exists operation shall raise the InvalidFileName exception when fileName is not avalid file
name or not an absolute pathname.

3.1.3.3.254 list.
3.1.3.3.254.1 Brief Rationae.

The list operation provides the ability to obtain alist of files along with their information in the
FileSystem according to a given search pattern. The list operation can be used to return
information for one file or for a set of files.

3.1.33.254.2 Synopsis.

Fil el nformati onSequence list(in string pattern)raises (FileException,
I nval i dFi | eNan®e) ;

3.1.3.3.254.3 Behavior.

The list operation shall return alist of file information based upon the search pattern given. The
list operation shall support the following wildcard characters for base file names (i.e., the part
after the right-most slash):

(1) * used to match any sequence of characters (including null).
(2) ? used to match any single character.

These wildcards may only be applied to the base filename in the search pattern given. For
example, the following are valid search patterns:

ltmpffiles/*.* Returns al files and directories within the /tmp/files directory. Directory
names indicated with a“/” at the end of the name.

ltmpl/files/foo* Returns al files beginning with the letters “foo” in the /tmp/files directory.

Itmp/files/f?? Returnsall 3 letter files beginning with the letter f in the /tmp/files
directory.

3-96

MSRC-5000SCA
rev. 2.2 |

3.1.3.3.254.4 Returns.

The list operation shall return a FilelnformationSequence for files that match the wildcard
specification as specified in the input pattern parameter. The list operation will return a zero
length sequence when no file matching occurred for the input pattern parameter.

3.1.33.2545 ExceptiongErrors.

The list operation shall raise the InvalidFileName exception when the input pattern does not start
with adlash /" or cannot be interpreted due to unexpected characters.

The list operation shall raise the FileException when afile-related error occurs.
3.1.3.3.255 create.

3.1.3.3.255.1 Brief Rationale.
The create operation provides the ability to create a new file on the FileSystem.

3.1.3.3.255.2 Synopsis.
File create(in string fileNane) raises(InvalidFileNane, FileException);

3.1.3.3.2553 Behavior.
The create operation shall create a new File based upon the provided fileName attribute.

31332554 Returns.

The create operation shall return a File component reference to the opened file. The create
operation shall return anull file component reference if an error occurs.

3.1.3.3.2555 ExceptiongErrors.

The create operation shall raise the CF FileException if the file already exists or another file
error occurred.

The create operation shall raise the InvalidFileName exception when afileName is not avalid |
file name or not an absolute pathname.

3.1.3.3.25.6 open.

3.1.3.3.256.1 Brief Rationale.

The open operation provides the ability to open afile for read or write.

3.1.33.256.2 Synopsis.

File open(in string fileName, in boolean read Only) raises(InvalidFileNane,
Fi | eException);

3.1.3.325.6.3 Behavior.

The open operation shall open afile based upon the input fileName. The read_Only parameter
indicates if the file should be opened for read access only. The open operation shall open thefile
for write access when theread _Only parameter isfalse.

3.1.3.3.256.4 Returns.

The open operation shall return aFile component parameter on successful completion. The open
operation shall return a null file component reference if the open operation is unsuccessful. If
thefileis opened with theread _Only flag set to true, then writes to the file will be considered an
error.

3-97

M SRC-5000SCA
rev. 2.2

3.1.33.256.5 ExceptiongErrors.

The open operation shall raise the CF FileException if the file does not exist or another file error
occurred.

The open operation shall raise the InvalidFileName exception when the filenameis not avalid
file name or not an absol ute pathname.

3.1.3.3.25.7 mkdir.
3.1.3.3.25.71 Brief Rationale.
The mkdir operation provides the ability to create a directory on the file system.

3.1.3.3.257.2 Synopsis.
void nkdir(in string directoryNane) raises(|nvalidFileName, FileException);

3.1.3.3257.3 Behavior.

The mkdir operation shall create a FileSystem directory based on the directoryName given. The
mkdir operation shall create all parent directories required to create the directoryName path
given.

3.1.332574 Returns.

This operation does not return any value.

3.1.3.3.25.75 ExceptiongErrors.

The mkdir operation shall raise the CF FileException if afile-related error occurred during the
operation.

The mkdir operation shall raise the InvalidFileName exception when the directoryName is not a
valid directory name.

3.1.3.3.25.8 rmdir.
3.1.3.3.258.1 Brief Rationale.
The rmdir operation provides the ability to remove a directory from the file system.

3.1.33.258.2 Synopsis.
void rndir(in string directoryNane) raises(|InvalidFileNane, FileException);

31332583 Behavior.

The rmdir operation shall remove a FileSystem directory, based on the directoryName given,
only if the directory is empty (no files exist in directory).

31332584 Returns.
This operation does not return any value.

31332585 ExceptiongdErrors.

The rmdir operation shall raise the CF FileException when the directory does not exist, if the
directory is not empty, or another file-related error occurred.

The rmdir operation shall raise the InvalidFileName exception when the directoryName is not a
valid directory name.

3-98

MSRC-5000SCA
rev. 2.2 |

3.1.3.3.25.9 query.
3.1.3.3.259.1 Brief Rationale.
The query operation provides the ability to retrieve information about afile system.

3.133.259.2 Synopsis.

voi d query(inout Properties fileSystenProperties) raises(
UnknownFi | eSyst enProperties);

31332593 Behavior.

The query operation shall return file system information to the calling client based upon the
given fileSystemProperties ID.

As aminimum, the FileSystem query operation shall support the following fileSystemProperties:

1. SIZE-anID vaue of “SIZE causes query to return an unsigned long long containing
the file system size (in octets).

2. AVAILABLE SPACE —an ID value of “AVAILABLE SPACE” causes the query
operation to return an unsigned long long containing the available space on thefile
system (in octets),

See section 3.1.3.3.2.3.2 for the constants for the fileSystemProperties.

31332594 Returns.
This operation does not return any value.

3.1.3.3.2595 ExceptiongErrors.

The query operation shall raise the UnknownFileSystemProperties exception when the given file
system property is not recognized.

3.1.3.3.3 FileManager.

3.1.3.3.3.1 Description.

Multiple, distributed FileSystems may be accessed through a FileManager. The FileManager

interface appears to be a single FileSystem although the actual file storage may span multiple
physical file systems. (Reference the FileManager interface UML in Figure 3-33.)

Thisis called afederated file system. A federated file system is created using the mount and
unmount operations. Typically, the DomainManager or system initialization software will
invoke these operations.

The FileManager inheritsthe IDL interface of a FileSystem. Based upon the pathname of a
directory or file and the set of mounted FileSystems, the FileManager will delegate the
FileSystem operations to the appropriate FileSystem. For example, if aFileSystemis mounted at
/ ppc2, an open operation for afilecalled / ppc2/ profil e. xm would be delegated to the
mounted FileSystem. The mounted FileSystem will be given the filename relativetoit. Inthis
example the FileSystem’ s open operation would receive/ pr of i | e. xm asthefileName
argument.

Another example of this concept can be shown using the copy operation. When a client invokes
the copy operation, the FileManager will delegate operations to the appropriate FileSystems
(based upon supplied pathnames) thereby allowing copy of files between FileSystems.

3-99

M SRC-5000SCA
rev. 2.2

If aclient does not need to mount and unmount FileSystems, it can treat the FileManager asa
FileSystem by CORBA widening a FileManager reference to a FileSystem reference. One can
always widen a FileManager to a FileSystem since the FileManager is derived from a
FileSystem.

3.1.3.3.3.2 UML.

<<Interface>>
FileSystem

<<Interface>>
FileM anager

Fmount(mountPoint : in string, file_System: in FileSystem) : void
Sunmount(mountPoint : in string) : void
SgetMounts() : MountSequence

7N
/ \

<<CORBA Exception>> <<Interface>>
InvalidFileName FileSystem

Figure 3-33. FileManager Interface UML

3.1.3.3.3.3 Types.
3.1.3.3.3.31 MountType.
The MountType structure shall identify the FileSystems mounted within the FileManager.

struct Mount Type {
string nmount Poi nt;
Fil eSystem fs;

};

3.1.3.3.3.3.2 MountSequence.
The MountSequence is an unbounded sequence of Mount types.

t ypedef sequence <Mount Type> Mount Sequence;

3.1.3.3.3.3.3 NonExistentMount.

The NonExistentM ount exception indicates a mount point does not exist within the
FileManager.

exception NonExi stent Mount{};

3-100

MSRC-5000SCA
rev. 2.2 |

3.1.3.3.3.34 MountPointAlreadyEXists.

The MountPointAlreadyEXxists exception indicates the mount point is already in usein the
FileManager.

excepti on Mount Poi nt Al readyExi st s{};

3.1.3.3.3.3.5 InvalidFileSystem.
The InvalidFileSystem exception indicates the FileSystemis anull (nil) object reference.
exception InvalidFileSystem};

3.1.3.3.3.4 Attributes.

N/A

3.1.3.3.3.5 Operations.

3.1.3.3.351 mount.

3.1.3.3351.1 Brief Rationale.

The FileManager supports the notion of afederated file system. To create afederated file
system, the mount operation associated a FileSystem with a mount point (a directory name).

3.1.33.351.2 Synopss.

void mount (in string muntPoint, in FileSystemfile System raises(
I nval i dFi | eNane, |nvalidFileSystem MountPointAlreadyExists);

31333513 Behavior.

The mount operation shall associate the specified FileSystem with the given mountPoint. A
mountPoint name shall begin with a*/”. A mountPoint nameisalogical directory name for a
FileSystem.

31333514 Returns.
This operation does not return any value.

3.1.33.3515 ExceptiongErrors.

The mount operation shall raise the InvalidFileName exception when the input file nameis |
invalid.

The mount operation shall raise the MountPointAlreadyExists exception when the mountPoint
already existsin the file manager.

The mount operation shall raise the InvalidFileSystem exception when the input FileSystemisa
null object reference.

3.1.3.3.3.5.2 unmount.
3.1.3.3.35.21 Brief Rationae.
Mounted FileSystems may need to be removed from a FileManager.

3.1.3.335.22 Synopsis.
voi d unmount (i n string nmount Point) raises(NonExistentMunt);

3-101

M SRC-5000SCA
rev. 2.2

31333523 Behavior.

The unmount operation shall remove a mounted FileSystem from the FileManager whose
mounted name matches the input mountPoint name.

31333524 Returns.

This operation does not return any value.

3.1.33.3525 ExceptiongErrors.

The unmount operation shall raise the NonExistentMount exception when the mountPoint does
not exist.

3.1.3.3.3.5.3 getMounts.

3.1.3.3.353.1 Brief Rationale.

File management user interfaces may need to list a FileManager’ s mounted FileSystems.

3.1.3.3353.2 Synopsis.
Mount Sequence get Mounts();

31333533 Behavior.

The getMounts operation shall return a sequence of Mount structures that describe the mounted
FileSystems.

31333534 Returns.
The getMounts operation returns a sequence of Mount structures.

3.1.3.3.3535 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.3.3.35.4 File System Operations.

The system may support multiple FileSystem implementations. Some FileSystems will
correspond directly to a physical file system within the system. The FileManager interface shall
support afederated, or distributed, file system that may span multiple FileSysterm components.
From the client perspective, the FileManager may be used just like any other FileSystem
component since the FileManager inherits al the FileSystem operations.

The FileManager’ s inherited FileSystem operations behavior shall implement the requirements
of the FileSystem operations against the mounted file systems. The FileSystem operations ensure
that the filename/directory arguments given are absol ute pathnames relative to a mounted
FileSystem. The FileManager’s FileSystem operations shall remove the FileSystem mounted
name from the input fileName before passing the fileName to an operation on a mounted
FileSystem.

The FileManager shall use the mounted FileSystem for FileSystem operations based upon the
mounted FileSystem name that exactly matches the input fileName to the lowest matching
subdirectory.

3-102

MSRC-5000SCA
rev. 2.2 |

3.1.3.3.355 query.
3.1.3.3.355.1 Brief Rationale.

The inherited query operation provides the ability to retrieve the same information for a set of
file systems.

31333552 Synopss.

voi d query(inout Properties fileSystenProperties) raises(
UnknownFi | eSyst enProperties);

31333553 Behavior.

The query operation shall return the combined mounted file systems information to the calling
client based upon the given input fileSystemProperties’ IDs. Asaminimum, the query operation
shall support the following input fileSystemProperties IDs:

1. SIZE - aproperty item ID value of "SIZE" will cause the query operation to return the
combined total size of all the mounted file system as an unsigned long long property
value.

2. AVAILABLE_SPACE - aproperty item ID value of "AVAILABLE_SPACE" will
cause the query operation to return the combined total available space (in octets) of
al the mounted file system as unsigned long long property value.

31333554 Returns.
This operation does not return any value.

3.1.33.3555 ExceptiongErrors.

The query operation shall raise the UnknownFileSystemProperties exception when theinput
fileSystemProperties parameter contains an invalid property ID

3.1.3.3.4 Timer.
No SCA-mandated Timer interfaces have been defined at this time.

3.1.3.4 Domain Profile.

The hardware devices and software components that make up an SCA system domain are
described by a set of filesthat are collectively referred to asaDomain Profile. Thesefiles
describe the identity, capabilities, properties, inter-dependencies, and location of the hardware
devices and software components that make up the system. All of the descriptive data about a
system is expressed in the XML vocabulary. For purposes of this SCA specification, the
elements of the XML vocabulary have been based upon the OMG’'s CORBA Components
specification (orbos/99-07-01). [Note: At the time of thiswriting, 99-07-01 is a draft standard)].

Thetypes of XML filesthat are used to describe a system's hardware and software assets are
depicted in Figure 3-34. The XML vocabulary within each of these files describes a distinct
aspect of the hardware and software assets.

Domain Profile files shall use the format of the Document Type Definitions (DTDs) provided in
Appendix D. DTD filesareinstalled in the domain and shall have “.dtd” astheir filename
extension. All XML files shall have as the first two lines as an XML declaration (?xml) and a
document type declaration (!DOCTY PE). The XML declaration specifies the XML version and

3-103

M SRC-5000SCA
rev. 2.2

whether the document is standalone. The document type declaration specifies the DTD for the
document. Example declarations are as follows:

- <X?xml version="1.0" standalone="no?>"
-“<IDOCTY PE softwareassembly SY STEM “softwareassembly.2.0.dtd” >”

Domain Profile

o.n o.n
1
<<DTDHement>>
) . y . DomainM anager <<DTDHement>>
Device Corfiguration Descriptor i
e a Configuration Descriptor Software Asserrbly Descriptor
1
1
1
1.n
<<DTDHement>> 1.n 1
Profile Descriptor
— <<DTDHement>> <<DTDHement>>
Software Package Descriptor |« | Profile Descriptor
0.1
o.n on
<<DTDHement>> o <<DTDHement>> <<DTDHement>>
Device Package Descriptor -1 Properties Descriptor 5 Software Component Descriptor
.n

Figure 3-34. Relationship of Domain Profile XML File Types

3.1.3.4.1 Software Package Descriptor.

A Software Package Descriptor (SPD) identifies a software component implementation(s). A
Software Package Descriptor file shall have a“.spd.xml” extension. General information about a
software package, such as the name, author, property file, and implementation code information
and hardware and/or software dependencies are contained in a Software Package Descriptor file.

3.1.3.4.2 Software Component Descriptor.

A Software Component Descriptor (SCD) contains information about a specific SCA software
component (Resource, ResourceFactory, Device). A Software Component Descriptor file shall
have a*“.scd.xml” extension. A Software Component Descriptor file contains information about
the interfaces that a component provides and/or uses. A Software Component Descriptor for a
Device type has areference to Device Package Descriptor file.

3.1.3.4.3 Software Assembly Descriptor.

A Software Assembly Descriptor (SAD) contains information about the components that make
up an application. The ApplicationFactory uses this information when creating an application.
A Software Assembly Descriptor file shall have a*“.sad.xml” extension.

3-104

MSRC-5000SCA
rev. 2.2 |

3.1.3.4.4 Properties Descriptor.

A Property File contains information about the properties applicable to a software package or a
device package. A Properties File shall have a“.prf.xml” extension. A Properties File contains
information about the properties of a component such as configuration, test, execute, and
allocation types.

3.1.3.4.5 Device Package Descriptor.

A Device Package Descriptor (DPD) identifies a class of a device (as described in Section 4). A
Device Package Descriptor File shall have a“.dpd.xml” extension. A Device Package
Descriptor also has Properties that define specific properties (capacity, serial number, etc.) for
this class of device.

3.1.3.4.6 Device Configuration Descriptor.

A Device Configuration Descriptor (DCD) contains information about the children Devices for a
Device, how to find the DomainManager, and the configuration information (Log, FileSystems,
etc.) for aDevice. A Device Configuration Descriptor file shall have a*“.dcd.xml” extension.

3.1.3.4.7 Profile Descriptor

A Profile Descriptor contains an absolute file name for either a Software Package Descriptor,
Software Assembly Descriptor, or a Device Configuration Descriptor. The Profile Descriptor is
derived from the Application, ApplicationFactory, and Device attributes.

3.1.3.4.8 DomainManger Configuration Descriptor.

A DomainManager Configuration Descriptor (DMD) contains configuration information for the
DomainManager. A DomainManager Configuration Descriptor file shall have a®.dmd.xml”
extension.

3.1.3.5 Core Framework Base Types.
The CF Base Types are the underlying types used in the CF interfaces.

3.1.35.1 DataType.

Thistypeisa CORBA IDL struct type, which can be used to hold any CORBA basic type or
static IDL type. Theid attribute indicates the kind of value and type (e.g., frequency, preset,
etc.). Theid can be an UUID string, an integer string, or aname identifier. The value attribute
can be any static IDL type or CORBA basic type.
struct DataType {

string id;
any val ue;

};

3.1.3.5.2 DeviceSequence.

The CF DeviceSequence type defines an unbounded sequence of Devices. The IDL to Ada
mapping has a problem with self-referential interfaces. To get around this problem, the interface
Device forward declaration has been created and this type has been moved outside of the Device
interface.

typedef sequence <Devi ce> Devi ceSequence;

3-105

M SRC-5000SCA
rev. 2.2

3.1.3.5.3 FileException.

The FileException indicates afile-related error occurred. The error number shall indicate an
ErrorNumberType value (e.g., EBADF, EEXIST, EISDIR, EMFILE, ENFILE, ENOENT,
ENOSPC, ENOTDIR, ENOTEMPTY, EROFS). The message provides information describing
the error. The message can be used for logging the error.

exception Fil eException{ErrorNunber Type errorNunber; string nsg;};

3.1.3.5.4 InvaidFileName.

The InvalidFileName exception indicates an invalid file name was passed to afile service
operation. The error number shall indicate an ErrorNumberType value (e.g.,
ENAMETOOLONG). The message provides information describing why the filename was
invalid.

exception InvalidFileName {ErrorNunber Type errorNunmber; string nsg;};

3.1.3.5.5 InvaidObjectReference.
The InvalidObjectReference exception indicates an invalid CORBA object reference error.

exception InvalidObjectReference{string nsg;};

3.1.3.5.6 InvaidProfile.
The InvalidProfile exception indicates an invalid profile error.

exception InvalidProfile{};

3.1.3.5.7 OctetSequence.
Thistypeisa CORBA unbounded sequence of octets.

typedef sequence <octet> Cctet Sequence;

3.1.3.5.8 Properties.

The propertiesisa CORBA IDL unbounded sequence of CF Data Type(s), which can be used in
defining a sequence of name and value pairs.

t ypedef sequence <DataType> Properties;

3.1.3.5.9 StringSequence.
This type defines a sequence of strings.

t ypedef sequence <string> StringSequence;

3.1.3.5.10 UnknownProperties.
The UnknownProperties exception indicates a set of properties unknown by the component.

exception UnknownProperties {Properties invalidProperties };
3.1.3.5.11 DeviceAssignmentType.

DeviceAssignmentType defines a structure that associates a component with the Device upon
which the component must execute.

struct Devi ceAssi gnnent Type
{

3-106

MSRC-5000SCA
rev. 2.2 |

string conponent | d;
string assi gnedDevi cel d;

}

3.1.3.5.12 DeviceAss gnmentSequence.

The IDL sequence, CF DeviceAssignmentSequence, provides an unbounded sequence of 0..n CF
DeviceAssignmentTypes.

Typedef sequence <Devi ceAssi gnnent Type> Devi ceAssi gnnment Sequence,;

3.1.3.5.13 ErrorNumberType.

Thisenum is used to pass error number information in various exceptions. Those exceptions
starting with “E” map the POSIX definitions, and can be found in IEEE Std 1003.1 1996 Edition.
Those exceptions starting with CF are defined below:

CENOTSET CFNOTSET isnot defined in the POSIX specification. CFNOTSET isan SCA
specific value that is applicable for any exception when the method specific or
standard POSIX error values are not appropriate.)

enum Error Nunber Type

{
CFNOTSET, E2BI G EACCES, EAGAI N, EBADF, EBADVMSG EBUSY, ECANCELED,
ECH LD, EDEADLK, EDOMVI EEXI ST, EFAULT, EFBI G ElI NPROGRESS, EI NTR,
El NVAL, EIO EISDI R EM-ILE, EM.I NK, EMSGSIZE, ENAMETOOLONG, ENFI LE,
ENODEV, ENCENT, ENOEXEC, ENOLCK, ENOVEM ENOSPC, ENGCSYS, ENOTDI R,
ENOTEMPTY, ENOTSUP , ENOTTY, ENXI O, EPERM EPI PE, ERANGE , ERCFS, ESPI PE,
ESRCH, ETI MEDOQUT , EXDEV

s

3.2 APPLICATIONS.

Applications are programs that perform the functions of a specific SCA-compliant product.
They must meet the requirements of a procurement specification and are not defined by the SCA
except asthey interface to the OE.

3.2.1 General Application Requirements.

3211 OS Services.
Applications shall be limited to using the OS services that are designated as mandatory in the
SCA AEP as specified in section 3.1.1.

Applications shall perform file access through the CF Fileinterfaces. Application file names
shall not exceed 40 characters.

To ensure controlled termination, applications shall have asignal handler installed for the
POSIX-defined SIGQUIT signal.
3.2.1.2 CORBA Services.

Applications shall be limited to using CORBA and CORBA services as specified in section
3.1.2. Dynamically-created stringified IORs may be used to provide an IOR reference value

3-107

M SRC-5000SCA
rev. 2.2

parameter. Static stringified IORs will not be alowed as they create portability problems. The
use of Log interface per section 3.1.2.3.3 is optional if informational messages are not logged.

3.2.1.3 CF Interfaces.

Applications shall implement the CF interfaces as specified in section 3.1.3.1 using the
corresponding IDL in Appendix C. The following exceptionsto the use of CF interfaces are
allowed:

1. The use of ResourceFactory per section 3.1.3.1.7 isoptional.

The TestableObject runTest operation (3.1.3.1.3.5.1), Resour ce stop operation (3.1.3.1.6.5.1),
and Resource start operation (3.1.3.1.6.5.2) are not called at start-up.

Each application process that uses Naming Service shall support the Naming Context IOR, Name
Binding, and the identifier execute parameters as described in 3.1.3.2.2.5.1.3 in addition to their
user-defined execute propertiesin the component’s SPD. The application shall bind its
components’ object reference to the Naming Context IOR using the Name Binding parameter as
described in section 3.1.2.2.1. Each executable component of an application shall set itsidentifier
attribute using the component identifier execute parameter. Each executable component of an
application shall accept arguments of the form described in 3.1.3.2.6.5.1.3.Applications
components and DeviceManagers shall be provided with Domain Profile files per 3.1.3.4.

3.2.2 Application Interfaces.

Applications consist of one to many components. These components may be CORBA-capable
or not CORBA -capable components. For CORBA -capable components, in addition to
supporting the CF Base Application interfaces, the component can implement and use
component-specific interfaces for data and/or control. Interfaces provided by a component shall
be described in a Software Component Descriptor file as provides ports. Interfaces used by a
component shall be described in a Software Component Descriptor file as uses ports.

An application may have other external interfaces besides the Application interface. The
optional external interfaces for an application are the components’ ports referenced in the
application’s SAD externalports element. The application’s external interfaces shall be visible
and defined as described herein if:

1. the application provides a service that is used by more than one application, or

2. the service user requires the interface to be common across access service
implementations (e.g., HCI).

3-108

MSRC-5000SCA
rev. 2.2 |

3.2.2.1 Service APls.

Service APIs provide definition and standardization of common functionality and interfaces for
use by SCA applications (e.g. waveforms). Servicesinclude Network Services, Security
Services, and I/0O Services. Each Service API is defined by a Service Definition and Transfer
Mechanism. The API Supplement to the SCA Specification provides details and requirements
for Service APIs.

3.2.2.1.1 Service Definitions.

SCA-compliant Service Definitions consist of APIs, behavior, state, priority and additional
information that provide the contract between the Service Provider and the Service User. IDL is
used to define the interfaces for Service Definitions to foster reuse and interoperability. 1DL
provides a method to inherit from multiple interfaces to form a new Service Definition.

3.2.2.1.2 API Transfer Mechanisms.

A Transfer Mechanism provides the communication between a service provider and a service
user that may be co-located or distributed across different processors. Figure 3-35 shows the |
standard and alternate transfer mechanism structure for APIs.

3-109

M SRC-5000SCA
rev. 2.2

OMG CORBA

Object
Recuest CORBA DL Other
Semantics (e.g. STREAMYS)

Transfer &
Message
Syntax
IHOP Other
TCP/IP (e.g. TCP/IP)
Transports< ()

Figure 3-35. Standard and Alternate Transfer Mechanism

3.3 LOGICAL DEVICE.

A logical Device is a software proxy for a hardware device(s). Each hardware device used by an
| application Resource component shall have an associated logical Device interface. Logical
Device interfaces include Device, LoadableDevice, ExecutableDevice, and AggregateDevice.
| Thelogica Device interfaces are depicted in Figure 3-36.

3-110

MSRC-5000SCA
rev. 2.2 |

<<Interface>>
Resource

czidentifier : string

Pstart()
¥stop()

<<Interface>>

Device
<<Interface>> causageState : UsageType
AggregateDevice gadminState : AdminType

gsoperationalState : OperationalType
gesoftwareProfile : string

wlabel : string

czcompositeDevice : AggregateDevice

g»devices : DeviceSequence

®addDevice()
@remowveDevice()

WallocateCapacity ()
®deallocateCapacity()

<<Interface>>
LoadableDevice

®load()
®unload()

<<Interface>>
ExecutableDevice

Tterminate()
Fexecute()

Figure 3-36. Logical Device I nterface Relationships

3.3.1 OS Services.

Logica Devices are not restricted to using the services designated as mandatory by the SCA
AEP as specified in 3-1.

3-111

M SRC-5000SCA
rev. 2.2

A logical Device' s executable parameters shall accept arguments of the form described in
3.1.3.26.5.1.3.

A logical Device shall accept the executable parameters as specified described in 3.1.3.2.8.5.

3.3.2 CORBA Services.

Logica Devices shall be limited to using CORBA and CORBA services as specified in section
3-2.

3.3.3 CFInterfaces.

A logical Device implements one of the following CF interfaces: Device, LoadableDevice or
ExecutableDevice.

In addition to the requirements stated in the Device interface (section 3.1.3.2.4), alogical Device
has the requirements as stated in the Resource, PropertySet, Lifecycle, Port, PortSupplier and
TestableObject interfaces.

A logical Device shal register itself with a DeviceManager using the executable DeviceManager
IOR parameter per 3.1.3.2.8.5.

An aggregated logical Device shall add itself to a composite Device using the executable
Composite Device IOR parameter per 3.1.3.2.8.5.

The executable parameters (PROFILE_NAME, COMPOSITE_DEVICE_IOR, DEVICE_ID and
DEVICE_LABEL) asdescribed in 3.1.3.2.8.5 shall be used to set the Device' s softwareProfile,
compositeDevice, identifier, and label attributes.

A Device that has other Devices associated with it shall provide a“provides’ port that
implements the AggregateDevice interface. The “provides’ port name shall be named
“CompositeDevice’.

Additional service APIs and their ports beyond the CF adhere to the requirements as described in
section 3.2.2.2.
3.34 Prdfile

Each logical Device shall have a SPD, SCD, DPD, and one or more Properties Descriptors as
described in section 3.1.3.4. For each logical Device, alocation properties shall be defined in its
referenced SPD’ s property file.

34 GENERAL SOFTWARE RULES.
This section identifies those rules and recommendations specific to the Software Architecture
that are not specifically addressed el sewhere in this specification.

3.4.1 Software Development Languages.

3.4.1.1 New Software.

Software devel oped for an SCA-compliant product shall be developed in a standard higher order
language, except at provided below, for ease in processor portability. The goal of new

3-112

M SRC-5000SCA
rev. 2.2

development should be to provide SW that is independent from platform and environment
details, ensuring minimal portability issues.

An exception is allowed to this requirement, if there are program performance requirements that
require the use of assembly language programming.
3.4.1.2 Legacy Software.

Legacy software is not required to be rewritten in a standard higher order language. Legacy
software shall be interfaced to the core framework in accordance with this specification.

3-113

MSRC-5000SCA
rev. 2.2 |

4 HARDWAREARCHITECTURE DEFINITION

This section describes the methodol ogy of using the SCA as the basis for partitioning the
Hardware (HW) Architecture in terms of an Object-Oriented approach. This Object-Oriented
approach describes a hierarchy of hardware class and subclass objects that represent the
architecture. Characteristics, or attributes, associated with each hierarchical classform the
domain independent basis for the definition of each physical hardware device. Section 4.5
specifies the hardware requirements.

41 BASIC APPROACH.

The definition of the HW Architecture consists of a set of HW classes that are common across al
domains. Thetop-level hardware classes correspond with top-level hardware functions. These
top-level HW classes are further refined into subclasses that correspond with lower-level
hardware functions. The attributes associated with these classes and/or subclasses describe the
individual class or subclass contributions to system features and capabilities.

During implementation, this hardware class structure can be used to describe the hardware
implementation in accordance with procurement specifications. This object-oriented approach
enables a consistent application of the HW architecture (classes and rules) across the various
domains (i.e., Handheld, Dismounted, Vehicular, Airborne, and Maritime/Fixed).

Attributes and the HW class structure will potentially have multiple users over the lifetime of

each hardware module. Initially, when the radio system engineer is designing aradio system,

class attributes provide a place to sort top-level requirements, either by direct allocation or by |
anaysis and alocation. After physical partitioning is performed, the attributes outline HW
module(s) specification(s). The hardware designer, through the module specifications, in effect,
uses the attributes to characterize the design of the modules.

Software applications a so become users of HW attributes. The attributes are reported to the
DomainManager through the Device Profiles. As software applications become more
sophisticated, they will become increasingly dependent upon HW attributes, used potentially
both as variables or in software dependency checks in the applications.

4.2 CLASSSTRUCTURE.

Class structure is the hierarchy that depicts how object-oriented classes and subclasses are
related. The SCA hardware class structure identifies functional elementsthat in turn areused in
the creation of physical system elements (HW devices). Using this object-oriented approach,
devices "inherit" from the class structure and share common physical and interface attributes,
thus making it easier to identify and compare device interchangeability. (In thisuse, theterm
“inherit” simply means that attributes at a higher class-level are common with all the subclasses.
In the following figures, this feature is shown by a hollow arrow, the UML symbol for
“generalization”.)

Hardware devices represent physical implementations whose attributes are assigned specific
values. Inthis sense, the attributes define domain-neutral class objects (abstract classes) and the
values of the class attributes then place specific requirements on the implementation. HW
devices inherit common attributes via the hardware class structure. Devices can then be

4-1

M SRC-5000SCA
rev. 2.2

developed to satisfy procurement-specific requirements. All hardware devices will have values
assigned to the class attributes. (The attributes shown in the figuresin this section are
representative of the attributes associated with the respective classes and are provided for
illustrative purposes.)

421 TopLeve Class Structure.

The top-level SCA-Compliant Hardwar e class defines the system procurement-associated
attributes such as maintainability and availability requirements, as well as, physical,
environmental and device registration parameters. (Reference Figure 4-1.) The Chassis class
has unique physical, interface, platform power and external environment attribute values that are
related to external factors rather than individual modules within the chassis. The HWModule(s)
class represents awide variety of SCA-compliant physical hardware that inherits attributes from
the SCA-Compliant Hardware superclass. Subclasses of HWModule(s) inherit all its attributes,
including those shown in Figure 4-2. Stereotypes, indicated by enclosure in double brackets
(<<stereotype>>), are included in the class diagrams to better group and manage attribute labels
and titles. The stereotypes are generally associated with particular users of the attributes. The
<<Registration>> stereotype attributes are those that become part of a Device Profile as reported
through a Device Package Descriptor file. All other stereotypes indicate attributes that, when
reported, become part of the Device Profile as reported through a Property File.

SCA-Compliant Hardware
Maintainability
Availability
FormFactor
Environment
Power
<<Registration>>=>
DeviceName
DeviceClass
M odel Number®
SerialNumber
Manufacturer

(¢]

/e
[

© Chassis HW Module(s)
NumberOfSlots <<Programmability>>
BackPlaneType <<Performance> >
PowerRequirements
CoolingRequirements

(6]

Figure4-1. Top Level Hardware Class Structure

The Chassis subclass includes the attributes of number of module slots, form factor, back plane
type, platform environmental, power and cooling requirements. The HWModule(s) classisthe
parent to all module sub-classes and provides the basic attributes that are inherited by all

4-2

MSRC-5000SCA
rev. 2.2 |

hardware modules. Asthe class structure hierarchy extends from the more general top level
down into the more specific lower levels, each subclass inherits the attributes of all the preceding
hierarchy of classes. Module compatibility can be ascertained by comparing appropriate
instantiated attributes.

422 HWModule(s) Class Structure.

The JTRS concepts of hardware reuse, extendibility and expandability dictate a modular
implementation approach. The hardware architecture presents two very distinct module types.
The first type contains software intensive processing elements (i.e., Digital Signal Processor
(DSP) modules and General Purpose Processor (GPP) cards), while the second type contains
non-programmable functionality (such as RF elements). As programmable capability and
programmabl e hardware technol ogies evolve, functionality will migrate from totally embedded
hardware towards more software intensive applications of the hardware functions.

Thereisablurring of hardware/software functionality as systems are implemented. Functions
are realized from a combination of both hardware embedded functions and software functions.
Thus the HWModul e(s) class framework shown in figure 4-2 includes functional classes that are
strictly programmable in nature (Processor) and others that have embedded functionality. This
provides the framework necessary to construct the elements for a software programmable radio.

HW Module(s)
<<Programmability>>
<<Performance>>

RE Modem Processor INFOSEC 1/0

Reference Sandard

Figure4-2. Hardware Module Class Structure

The hardware class structure is expandabl e through the addition of new classes or through the
addition of new attributes to existing classes to allow for future growth capabilities. Stereotypes,
indicated by enclosure in double brackets (<<stereotype>>), are included in the class diagramsto
better group and manage attribute labels and titles.

4.2.3 Class Structure with Extensions.

Each hardware class can be extended further to provide additional attribute granularity. This
methodology provides both a formalized structure for hardware definition and the inherent
flexibility needed to alow for evolving requirements as well as hardware and software
capabilities.

4-3

M SRC-5000SCA
rev. 2.2

4231 RF Class Extension.

The subclasses in figure 4-3 extend the RF class hierarchy. These subclasses relate to the typical
range of RF hardware devices such as, Antennas, Receivers, Exciters, and Power Amplifiers. As
with al HW subclasses, the attributes contained within these RF subclasses attempt to
encapsulate the functionality that can be used to describe the unique mix of features and
capabilities of the associated hardware device.

Cosite performance considerations place a special burden on the RF class. Theintelligent
management of cosite performance requires monitoring and control of many of the RF subclass
modules. The hardware architecture supports cosite operation in two ways. First, thereisa
cosite sub-class. This encapsulates the hardware that is specifically provided for cosite
operation. Second, a <<CositePerformance>> stereotype groups those attributes useful for a
cosite manager application. Such an application, while not part of the architecture itself, isan
implementation-specific capability to coordinate RF assets.

Antennas have historically been passive elements typically attached to the structure that houses
the communications system. While remaining very domain and platform unique, technology
growth continually improves the capabilities that can be performed in the communications
system ‘front end', necessitating the inclusion of antennasin the core of JTRS. "Smart" antennas
include receive, transmit, and cosite mitigating elements, blurring the functional separation lines.
For this reason and because of the key role that antenna systems play in cosite management,
“Antenna’ isincorporated in the class structure as an RF subclass.

RF

<<Performance>>
FreguencyRange
Channélization
TuningSpeed
PowerL evel

DynamicRange

<<CositePerformance>>

MSRC-5000SCA
rev. 2.2 |

HA
| | |
Receiver Exciter Power Amplifier
Antenna NoiseFigure Distortion Distortion
VSWR Up/DownConversion <<quormanc@> VSWR_Tol erance
Gain << Pen‘prmanOP>> Carri erGenergn on | nputProtectl on
BeamStearing Bandvy| glth D/AConversion DrivePower _
FieldOf View Selectivity D/AThreshold Ou_tputLevellng
Polarization A/DSampl eRate D/ASampleRate Gain .
Transmit/Receive A/DResolution AGC ' Outp_utProtectl on
Nulling A/DThreshold DataQonyas on ReceiverConnection
AGC Equalization <<Performance>>
Equalization PowerControl PAType
Blanking <<CositePerformance>> OperationalModes
<<CositePerformance>> Spurs <<CositePerformance>>
Spurs PhaseNoise WidebandNoiseFloor
PhaseNoise WidebandNoiseFloor ReverselM
<<WaveFormSupport>> <<WaveFormSupport>> <<WaveFormSupport>>
SupportedWaveforms SupportedWaveforms SupportedWaveforms
EMP/Lightning Protection Cosite Mitigation RF Distribution
ResponseTime Attenuation Isolation
Voltagel evel Bandwidth NumberOfChannels
EnergyL evel DiversityCapability

Figure4-3. RF Class Extension

4.2.3.2 Modem Class Extension.

The Modem class shown in figure 4-4 has subclasses that encapsulate the attributes of
modulation and demodulation functions. The Modem class also contains attributes that can be
used to describe the range of signal processing and data conversion capabilities such as spreading
and de-spreading. The <<WaveFormSupport>> stereotype |abels the attribute of
SupportedWaveforms. Thisis an attribute indicating specifically what waveforms the modem is

capable of performing.

M SRC-5000SCA
rev. 2.2

Modem
TRANSEC
<<WaveFormSupport>>
SupportedWaveforms
<<Performance>>
DataConversion
DynamicRange
CodingRate
CodingType
Equalization
InterleaveType
InterleaveRate
ModulationType
ModulationRate
SampleRate
/\
[T \
Modulator Demodulator
<<Performance>> DiversityCombining
PreM odulationFiltering FrequencyTracking
Multiplexing InterferenceExcision
Spreading Multipath
<<Performance>>
CarrierSync
Symbol Sync
CarrierSense
Despreading
DeMultiplexing

Figure 4-4. Modem Class Extension

4.2.3.3 Processor Class Extension.

The Processor class shown in figure 4-5 directly supports software operations by providing the
processors, memory, and supporting functions. Devices derived from this class include General
Purpose Processors, Digital Signal Processors, and extend to modules utilizing programmable
logic devices (FPGAS, etc.). The class captures the attributes of processing devices needed by
the system resources. This Processor class represents the type of hardware that, in itself,
essentially has no unique radio-functional capabilities of itsown. Its actual use, or personality, is
afunction of the software that isloaded into and executed on it. It can be envisioned that as
processor speeds and software capabilities evolve, this class of hardware will tend to dominate
future radio systems while some of the other hardware specific functions will be replaced by
processors and software. As this happens, the attributes associated with function and
performance will effectively migrate to the software applications that are running on the host
processors.

MSRC-5000SCA
rev. 2.2 |

Processor
<<Programmability>>
Type
ClockSpeed
MemaoryCapacity
ProcessingCapability
OperatingSystem

@

GPP DSP FPGA

Figure 4-5. Processor Class

4.2.3.4 INFOSEC Class.

The INFOSEC class provides structure for a hardware device that is described by the type of
cryptographic features it supports and certifications for which it has been qualified. Figure 4-6
lists INFOSEC class attributes.

INFOSEC
Certification
Accreditation
Type
Alarms
Number of Channels
Anti-Tamper
Authentication
Bypass Mode
Fill Type
Keys
MLS
TEMPEST
Network Security
OTAR
Validation
Zeroize Capability

Authentication()
Access Control()
Key Management()

T

Encrypt/Decrypt Access Control
COMSEC Type Type
TRANSEC Type Method
Algorithms Monitor Access
e Gonirol Daim Paths
Synch/Resynch

Key Management()

Figure4-6. INFOSEC Class

4-7

M SRC-5000SCA
rev. 2.2

4.2.35 1/0O Class Extension.

The 1/0O Class shown in figure 4-7 provides representation for general physical connectivity and
isnot limited to just user interfaces.

For every hardware device, the critical interfaces are those that are presented to the “outside
world’. The definition of acritical interface is dependent on the class hierarchy level at which
the hardware deviceis being viewed. For example, if the HW device is a complete radio system,
it inherits attributes from the chassis class and its critical interfaces are defined at the chassis
physical boundary. Additionally, each module within the radio system has critical interfaces
uniqueto it; and its I/O attributes are inherited from the 1/0 subclass.

I/0
PinAssignment(s)

/\
\ - \
| | | |
Digital Discrete| | Digital Bus RF 1/0 Analog Photonic || Human-Machine
LogicType Serial Impedance | | Impedance Keypad
Fanin/Out Parallel VSWR SignalLevel Display
Standard SignallLevel | | Bandwidth Microphone
FanIn/Out Frequency Speaker
Network

Figure4-7. 1/0O Class Extension

4.2.4 Attribute Composition.

As hardware technology evolves, hardware modules will encompass increased levels of
functionality due to higher levels of integration. Thiswill allow more functiona hardware
classes to be realized within individual physical hardware modules. The function of the
individual classes remains the same, but they are physically realized on the same circuit card or
module. UML provides the ‘composition’ relationship to represent this. An example of thisis
shown in figure 4-8, showing a module that provides receive, transmit, and
modulation/demodulation capabilities, and using the hardware class model to illustrate this
fusion of capabilities. The resultant attribute list for the module will be composed of the unique
mix of features encapsulated by the four hardware classes from which it is composed. Since
each of theindividual classes inherit attributes from its respective higher-level class, the
hardware module also inherits from the higher levels.

MSRC-5000SCA
rev. 2.2 |

<Receiver> <Demodulator>| | <Exciter> | <Modulator>

<Company XY Z Transceiver/Modem>

Figure4-8. Typical Hardware Device Description using the SCA HW Class Structure

43 DOMAIN CRITERIA.

As communications systems assume multi-band, multi-channel, and multi-mission capabilities, a
dilemmaarises. When trying to satisfy the needs of both the small, highly mobile user
(Handheld Domain) and the large command center (Maritime/Fixed Domain), it is evident that
distinctly different mission and platform constraints exist. Offering the same solution for both
extremes is obviously not the optimum — or cost effective — solution for either. The highly
mobile user requires a compact, environmentally robust terminal containing embedded message
processing, sized sufficiently to their needs, but not so large as to meet the intensive
filtering/formatting/networking needs of the command center. The command center, on the other
hand, requires environmental robustness only to the inhabited level. There are many, real
barriers to complete commonality - cost being the largest. The most significant hardware cost-
savings potential isthe use of COTS standards, technology, and components, where possible.
The SCA provides the standard for use of COT S technology, design reuse across products, and
an open, well-documented architecture allowing multiple contractors to implement an entire
system or only a portion of it.

44 PERFORMANCE RELATED ISSUES.

A particular implementation of the SCA can have significant impact on the equipment
performance, especially in the case of complex waveforms and multi-channel radios. The areas
of cosite performance and system control timing have been identified as two key performance
areas for careful consideration. Discussions of the cosite effects and mitigation techniques
applicable to the physical implementation of the architecture are in the SRD.

45 GENERAL HARDWARE RULES.

Requirements placed on hardware objects by the SCA reflect a balance between the need to
support extendibility and interchangeability, and the support of technology growth and domain
constraints. The result isalimited set of specific rules (listed below) augmented by
implementation guidelines, much of which isin the SRD.

451 DeviceProfile.

Each supplied hardware device shall be provided with its associated Domain Profile files as
defined in section 3.1.3.4, Domain Profile.

4-9

M SRC-5000SCA
rev. 2.2

45.2 Hardware Critical Interfaces.

45.2.1 Interface Definition.

Hardware critical interfaces shall be defined in Interface Control Documents that are available to
other parties without restriction. Critical interfaces are those interfaces at the physical boundary
of areplaceable device that are required for the operation and maintenance of the device.

45.2.2 Interface Standards.

Hardware critical interfaces shall be in accordance with commercial or government standards,
unless there are program performance requirements that require a non-standard interface. If so
required, the non-standard interface shall be clearly and openly documented to the extent that
interfacing or replacement hardware can be developed by other parties without restriction.

45.2.2.1 Interface Selection.

In addition to the above, interface selection should consider the availability of supporting
products that have wide usage, are available from multiple vendors, and are expected to have
long-term support in the industry.

45.3 Form Factor.
The form factor of the hardware objects should be, where practical, in accordance with
commercia standards.

454 Modularity.

The partitioning of the hardware architecture into modules should be chosen to allow for ease of
upgrade through technology insertion or replacement of modules based on form, fit, and
function. Module boundaries are critical interfaces as defined in 4.5.2.1.

4-10

MSRC-5000SCA
rev. 2.2 |

5 SECURITY ARCHITECTURE DEFINITION

The security requirements in this section apply to the CF when security isimplemented in a
JTRS. Additional security requirements, beyond the CF, are in the Security Supplement to the
SCA.

5.1 ADDITIONAL CF SECURITY REQUIREMENTS.

5.1.1 Application.

The Application releaseObject operation shall only disconnect components' ports that are
authorized by an authentication service.

The Application releaseObject operation shall request removal of the Application’s Ports' access
setups from the access control database.

The Application releaseObject operation shall log a Security_Alarm event when unable to
disconnect components' ports because authorization was not granted by an authentication
service.

Application components SPD implementation dependency propertyref e ements shall indicate a
dependency to ared or black device (directly or indirectly).

5.1.2 ApplicationFactory.

The ApplicationFactory create operation shall only create components that are authorized by an
authentication service.

The ApplicationFactory create operation shall only connect components' ports together that are
authorized by an authentication service.

If port connections between components need to be access-controlled during execution, then the
ApplicationFactory create operation shall provide an update to the access control database. The
ApplicationFactory create operation shall provide updates to an access control database for all
components ports connections as stated in the application's SAD file.

The ApplicationFactory shall log a Security Alarm event when unable to connect ports or create
components because authorization was not granted by an authentication service.

5.1.3 DomainManager.

The DomainManager install Application operation shall send the information specified in the
Security Supplement to the control/bypass mechanism Resource for the black-side components
being accessed by red-side components and for red-side components being accessed by black-
side components.

The DomainManager uninstall Application operation shall request removal of the application’s
information specified in the Security Supplement from the control/status bypass mechanism.

Devices SPD properties shall have an allocation property that indicates ared or black device.
Parent Devices shall send their child Devices information specified in the Security Supplement to

51

M SRC-5000SCA
rev. 2.2

the control/status bypass mechanism. A parentless Device shall send itsinformation specified in
the Security Supplement to the control/status bypass mechanism.

5-2

MSRC-5000SCA
rev. 2.2 |

6 COMMON SERVICESAND DEPLOYMENT CONSIDERATIONS

6.1 COMMON SYSTEM SERVICES.

This section will define any common system services that are not part of the CF but are
considered part of the SCA. None have been identified at thistime.

6.2 OPERATIONAL AND DEPLOYMENT CONSIDERATIONS.

This section will address common interfaces or features necessary to support deployment of
SCA-compliant systemsin the field. None have been identified at thistime.

6-1

6-2

M SRC-5000SCA
rev. 2.2

MSRC-5000SCA
rev. 2.2 |

7 ARCHITECTURE COMPLIANCE

This section defines the criteriafor certifying candidate system, hardware, and software application
products to this specification.

This specification may be applied to procurement of a multitude of radio products and
communication systems. In addition, this specification may also be applied to hardware-only or
software-only products that would be hosted on SCA-compliant systems.

7.1 CERTIFICATION AUTHORITY.

The JTRS Joint Program Office (JPO) holds the authority to certify that a candidate product meets
the requirements of this specification. This authority may be transferred, in time, to ageneral
standards body.

7.2 RESPONSIBILITY FOR COMPLIANCE EVALUATION.
The responsibility for performing the evaluation of a candidate product's complianceis TBD. This
body will determine the test methods and procedures used to establish compliance.

7.3 EVALUATING COMPLIANCE.

Compliance to this specification is defined as meeting all requirements, except as specificaly
allowed herein. Products submitted as "SCA-Compliant” will be evaluated for compliancein
accordance with the test methods and procedures established per section 7.2.

7.4 REGISTRATION.

Documentation of some elements of an SCA implementation, as defined in sections 3 and 4, will be
submitted to a Registration Body to be established, initially, by the JTRS JPO.

[The establishment, membership, rules, and operation of Registration Bodies are beyond the scope
of the SCA.]

Some elements of an SCA implementation are identified with aUUID. Asused inthis
specification, the UUID is defined by the DCE UUID standard (adopted by CORBA). (OSF
Distributed Computing Environment, DCE 1.1 Remote Procedure Call) No centralized authority is
required to administer UUIDs (beyond the one that allocates IEEE 802.1 node identifiers [Medium
Access Control (MAC) addresses]).

7-1

	INTRODUCTION
	SCOPE.
	COMPLIANCE.
	Joint Technical Architecture Compliance.

	DOCUMENT CONVENTIONS, TERMINOLOGY, AND DEFINITIONS.
	Conventions and Terminology.
	Unified Modeling Language.
	Interface Definition Language.
	eXtensible Markup Language.
	Color Coding.
	Requirements Language.
	CF Interface and Operation Identification.

	Definitions.

	DOCUMENT CONTENT.
	APPLICABLE DOCUMENTS.
	Government Documents.
	Commercial Documents.

	OVERVIEW
	ARCHITECTURE DEFINITION METHODOLOGY.
	ARCHITECTURE OVERVIEW.
	Overview - Software Architecture.
	Bus Layer (Board Support Package).
	Network & Serial Interface Services.
	Operating System Layer.
	Core Framework.
	CORBA Middleware.
	Application Layer.
	Applications.
	Adapters.

	Software Radio Functional Concepts.
	Software Reference Model.
	ModemDevice Functionality.
	NetworkResource and LinkResource Functionality.
	I/ODevice Functionality.
	SecurityDevice Functionality.
	UtilityResource Functionality.

	System Control.

	Networking Overview.
	External Networking Protocols.
	SCA Support for External Networking Protocols.

	Overview - Hardware Architecture.

	O
	OPERATING ENVIRONMENT.
	
	Operating System.
	Middleware & Services.
	CORBA.
	CORBA Extensions.
	Naming Service.

	Log Service.
	Use of Log Service.
	LogService Module�.
	Types.
	LogLevelType.
	ProducerLogRecordType.
	LogLevelSequence.

	Log.
	Description.
	UML.
	Types.
	InvalidParam Exception.
	This paragraph intentionally left blank.
	LogTimeType.
	OperationalStateType.
	AdministrativeStateType.
	AvailabilityStatusType.
	LogFullActionType.
	RecordIDType.
	LogRecordType.
	LogRecordSequence.
	ProducerLogRecordSequence Type.

	Attributes.
	Operations.
	getMaxSize.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setMaxSize.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getCurrentSize.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getNumRecords.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getLogFullAction.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setLogFullAction.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getAvailabilityStatus.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getAdministrativeState.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setAdministrativeState.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getOperationalState.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	writeRecords.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getRecordIdFromTime.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	retrieveById.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	clearLog.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	destroy.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	CORBA Event Service and Standard Events.
	CORBA Event Service.
	StandardEvent Module.
	Types.
	StateChangeCategoryType.
	StateChangeType.
	StateChangeEventType.
	SourceCategoryType.
	DomainManagementObjectRemovedEventType.
	DomainManagementObjectAddedEventType.

	Core Framework.
	Base Application Interfaces.
	Port.
	Description.
	UML.
	Types.
	InvalidPort.
	OccupiedPort.

	Attributes.
	Operations.
	connectPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	disconnectPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	LifeCycle.
	Description.
	UML.
	Types.
	InitializeError.
	ReleaseError.

	Attributes.
	Operations.
	initialize.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	releaseObject.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	TestableObject.
	Description.
	UML.
	Types.
	UnknownTest.

	Attributes.
	Operations.
	runTest.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	PortSupplier.
	Description.
	UML.
	Types.
	UnknownPort.

	Attributes.
	Operations.
	getPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	PropertySet.
	Description.
	UML.
	Types.
	InvalidConfiguration.
	PartialConfiguration.

	Attributes.
	Operations.
	configure.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	query.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Resource.
	Description.
	UML.
	Types.
	UnknownPort.
	StartError.
	StopError.

	Attributes.
	identifier.

	Operations.
	stop.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	start.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	ResourceFactory.
	Description.
	UML.
	Types.
	InvalidResourceId.
	ShutdownFailure.
	CreateResourceFailure.

	Attributes.
	Operations.
	createResource.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	releaseResource.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	shutdown.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Framework Control Interfaces.
	Application.
	Description.
	UML.
	Types.
	ComponentProcessIdType
	ComponentProcessIdSequence
	ComponentElementType
	ComponentElementSequence

	Attributes.
	profile.
	name.
	componentNamingContexts.
	componentProcessIds.
	componentDevices.
	componentImplementations.

	General Class Behavior.
	Operations.
	releaseObject.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	ApplicationFactory.
	Description.
	UML.
	Types.
	CreateApplicationRequestError Exception.
	CreateApplicationError Exception.
	Exception InvalidInitConfiguration

	Attributes.
	name.
	softwareProfile.
	identifier.

	Operations.
	create.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	DomainManager.
	Description.
	UML.
	Types.
	ApplicationInstallationError.
	InvalidIdentifier.
	DeviceManagerSequence.
	ApplicationSequence.
	ApplicationFactorySequence.
	DeviceManagerNotRegistered Exception
	RegisterError.
	UnregisterError.
	ApplicationUninstallationError.
	InvalidEventChannelName.
	AlreadyConnected.
	NotConnected.

	Attributes.
	deviceManagers.
	applications.
	applicationFactories.
	fileMgr.
	domainManagerProfile.
	identifier.

	General Class Behavior.
	Operations.
	registerDeviceManager.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	registerDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	installApplication.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterDeviceManager.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	uninstallApplication.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	registerService.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterService.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	registerWithEventChannel.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterFromEventChannel.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Device.
	Description.
	UML.
	Types.
	InvalidState.
	InvalidCapacity.
	AdminType.
	OperationalType.
	UsageType.

	Attributes.
	usageState.
	adminState.
	operationalState.
	softwareProfile.
	label.
	compositeDevice.

	Operations.
	allocateCapacity.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	deallocateCapacity.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	releaseObject.
	Description.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	LoadableDevice.
	Description.
	UML.
	Types.
	LoadType.
	InvalidLoadKind.
	LoadFail.

	Attributes.
	Operations.
	load.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unload.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	ExecutableDevice.
	Description.
	UML.
	Types.
	InvalidProcess.
	InvalidFunction.
	ProcessID_Type.
	InvalidParameters.
	InvalidOptions.
	STACK_SIZE_ID.
	PRIORITY_ID.
	ExecuteFail.

	Attributes.
	Operations.
	execute.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	terminate.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	AggregateDevice.
	Description.
	UML.
	Types.
	Attributes.
	devices.

	Operations.
	addDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	removeDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	DeviceManager.
	Description.
	UML.
	Types.
	ServiceType.
	ServiceSequenceType.

	Attributes.
	identifier.
	label.
	fileSys.
	deviceConfigurationProfile.
	registeredDevices.
	registeredServices.

	General Behavior.
	Operations.
	registerDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	registerService.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterService.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	shutdown.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getComponentImplementationId.
	Brief Rational.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Framework Services Interfaces.
	File.
	Description.
	UML.
	Types.
	IOException.
	InvalidFilePointer.

	Attributes.
	fileName.
	filePointer.

	Operations.
	read.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	write.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	sizeOf.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	close.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setFilePointer.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	FileSystem.
	Description.
	UML.
	Types.
	UnknownFileSystemProperties.
	fileSystemProperties Query Constants.
	FileInformationType.
	FileInformationSequence.
	FileType.
	CREATED_TIME_ID.
	MODIFIED_TIME_ID.
	LAST_ACCESS_TIME_ID.

	Attributes.
	Operations.
	remove.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	copy.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	exists.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	list.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	create.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	open.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	mkdir.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	rmdir.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	query.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	FileManager.
	Description.
	UML.
	Types.
	MountType.
	MountSequence.
	NonExistentMount.
	MountPointAlreadyExists.
	InvalidFileSystem.

	Attributes.
	Operations.
	mount.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unmount.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getMounts.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	File System Operations.
	query.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Timer.

	Domain Profile.
	Software Package Descriptor.
	Software Component Descriptor.
	Software Assembly Descriptor.
	Properties Descriptor.
	Device Package Descriptor.
	Device Configuration Descriptor.
	Profile Descriptor
	DomainManger Configuration Descriptor.

	Core Framework Base Types.
	Data Type.
	DeviceSequence.
	FileException.
	InvalidFileName.
	InvalidObjectReference.
	InvalidProfile.
	OctetSequence.
	Properties.
	StringSequence.
	UnknownProperties.
	DeviceAssignmentType.
	DeviceAssignmentSequence.
	ErrorNumberType.

	APPLICATIONS.
	General Application Requirements.
	OS Services.
	CORBA Services.
	CF Interfaces.

	Application Interfaces.
	Service APIs.
	Service Definitions.
	API Transfer Mechanisms.

	LOGICAL DEVICE.
	OS Services.
	CORBA Services.
	CF Interfaces.
	Profile

	GENERAL SOFTWARE RULES.
	Software Development Languages.
	New Software.
	Legacy Software.

	HARDWARE ARCHITECTURE DEFINITION
	BASIC APPROACH.
	CLASS STRUCTURE.
	Top Level Class Structure.
	HWModule(s) Class Structure.
	Class Structure with Extensions.
	RF Class Extension.
	Modem Class Extension.
	Processor Class Extension.
	INFOSEC Class.
	I/O Class Extension.

	Attribute Composition.

	DOMAIN CRITERIA.
	PERFORMANCE RELATED ISSUES.
	GENERAL HARDWARE RULES.
	Device Profile.
	Hardware Critical Interfaces.
	Interface Definition.
	Interface Standards.
	Interface Selection.

	Form Factor.
	Modularity.

	SECURITY ARCHITECTURE DEFINITION
	ADDITIONAL CF SECURITY REQUIREMENTS.
	Application.
	ApplicationFactory.
	DomainManager.

	COMMON SERVICES AND DEPLOYMENT CONSIDERATIONS
	COMMON SYSTEM SERVICES.
	OPERATIONAL AND DEPLOYMENT CONSIDERATIONS.

	ARCHITECTURE COMPLIANCE
	CERTIFICATION AUTHORITY.
	RESPONSIBILITY FOR COMPLIANCE EVALUATION.
	EVALUATING COMPLIANCE.
	REGISTRATION.

