

Software Communications Architecture Specification

MSRC-5000SCA
V2.2

November 17, 2001

Prepared for the
Joint Tactical Radio System (JTRS) Joint Program Office

Prepared by the
Modular Software-programmable Radio Consortium

under Contract No. DAAB15-00-3-0001

MSRC-5000SCA
rev. 2.2

Revision Summary
1.0 Formal release for initial validation.
1.1 Incorporate approved Change Proposals, numbers 97, 99, 110, 160, 161, 162, 164, 171,

177, 178, 179, 180, 193, 195, 201, 204, 205, 208, 209, 211, 216.
2.0 Incorporate approved Change Proposals, numbers 39, 105, 119, 147, 175, 186, 191, 192,

210, 217, 218, 219, 220, 222, 223, 225, 226, 227, 229, 231, 232, 235, 237, 240, 243, 249,
255, 258, 266, 270, 275, 276, 277, 278, 282, 283, 285, 299, 307, 308, 310, 311, 332, 335,
336, 337, 341, 342, 343, 344, 345.

2.1 Incorporate approved Change Proposals, numbers 88, 102, 142, 306, 316, 353, 357, 358,
359, 360, 365, 366, 367, 369, 370, 371, 372, 373, 419, 468, 471, 472, 473, 475, 476, 477

2.2 Incorporate approved Change Proposals, numbers 138, 250, 279, 338, 388, 466, 486, 487,
488, 495, 497, 504, 508, 509, 513, 514, 515, 517

Changes from the previous revision, other than editorial corrections, are marked with change bars
in the margins.

Change Proposals are controlled by the JTRS Change Control Board. CPs incorporated into the
SCA are considered "closed" and can be seen on the JTRS web site at:
www.jtrs.saalt.army.mil/docs/documents/sca_ccb.html.

MSRC-5000SCA
rev. 2.2

i

Table of Contents

FOREWORD VII

1 INTRODUCTION.. 1-1
1.1 Scope... 1-1
1.2 Compliance. ... 1-2

1.2.1 Joint Technical Architecture Compliance. .. 1-2
1.3 Document conventions, Terminology, and Definitions.. 1-2

1.3.1 Conventions and Terminology. ... 1-2
1.3.1.1 Unified Modeling Language. ..1-2
1.3.1.2 Interface Definition Language. ...1-3
1.3.1.3 eXtensible Markup Language. ..1-3
1.3.1.4 Color Coding...1-3
1.3.1.5 Requirements Language..1-3
1.3.1.6 CF Interface and Operation Identification. ...1-3

1.3.2 Definitions... 1-3
1.4 Document Content. ... 1-4
1.5 Applicable Documents. ... 1-4

1.5.1 Government Documents.. 1-4
1.5.2 Commercial Documents.. 1-4

2 OVERVIEW ... 2-1
2.1 Architecture Definition Methodology. .. 2-1
2.2 Architecture Overview.. 2-1

2.2.1 Overview - Software Architecture. ... 2-1
2.2.1.1 Bus Layer (Board Support Package)...2-2
2.2.1.2 Network & Serial Interface Services...2-2
2.2.1.3 Operating System Layer..2-2
2.2.1.4 Core Framework..2-3
2.2.1.5 CORBA Middleware...2-3
2.2.1.6 Application Layer..2-3

2.2.1.6.1 Applications. ...2-4
2.2.1.6.2 Adapters. ...2-4

2.2.1.7 Software Radio Functional Concepts..2-5
2.2.1.7.1 Software Reference Model. ..2-5
2.2.1.7.2 ModemDevice Functionality. ..2-7
2.2.1.7.3 NetworkResource and LinkResource Functionality. ...2-8
2.2.1.7.4 I/ODevice Functionality..2-9
2.2.1.7.5 SecurityDevice Functionality..2-10
2.2.1.7.6 UtilityResource Functionality. ..2-12

2.2.1.8 System Control..2-12
2.2.2 Networking Overview. .. 2-13

2.2.2.1 External Networking Protocols. ..2-14

MSRC-5000SCA
rev. 2.2

ii

2.2.2.2 SCA Support for External Networking Protocols. ..2-15
2.2.3 Overview - Hardware Architecture. .. 2-16

3 OPERATING ENVIRONMENT.. 3-1
3.1.1 Operating System. ... 3-1
3.1.2 Middleware & Services... 3-2

3.1.2.1 CORBA. ..3-2
3.1.2.2 CORBA Extensions. ...3-2

3.1.2.2.1 Naming Service. ...3-2
3.1.2.3 Log Service. ..3-2

3.1.2.3.1 Use of Log Service. ..3-2
3.1.2.3.2 LogService Module. ...3-3
3.1.2.3.3 Log. ...3-4

3.1.2.4 CORBA Event Service and Standard Events..3-13
3.1.2.4.1 CORBA Event Service. ..3-13
3.1.2.4.2 StandardEvent Module. ..3-14

3.1.3 Core Framework.. 3-16
3.1.3.1 Base Application Interfaces. ...3-17

3.1.3.1.1 Port. ..3-18
3.1.3.1.2 LifeCycle. ..3-20
3.1.3.1.3 TestableObject. ...3-21
3.1.3.1.4 PortSupplier..3-23
3.1.3.1.5 PropertySet. ..3-24
3.1.3.1.6 Resource. ..3-26
3.1.3.1.7 ResourceFactory. ..3-29

3.1.3.2 Framework Control Interfaces. ...3-32
3.1.3.2.1 Application..3-32
3.1.3.2.2 ApplicationFactory. ..3-38
3.1.3.2.3 DomainManager. ..3-44
3.1.3.2.4 Device. ..3-62
3.1.3.2.5 LoadableDevice. ...3-72
3.1.3.2.6 ExecutableDevice. ..3-75
3.1.3.2.7 AggregateDevice...3-79
3.1.3.2.8 DeviceManager...3-81

3.1.3.3 Framework Services Interfaces. ..3-89
3.1.3.3.1 File. ...3-89
3.1.3.3.2 FileSystem. ..3-93
3.1.3.3.3 FileManager. ..3-99
3.1.3.3.4 Timer...3-103

3.1.3.4 Domain Profile. ...3-103
3.1.3.4.1 Software Package Descriptor..3-104
3.1.3.4.2 Software Component Descriptor. ...3-104
3.1.3.4.3 Software Assembly Descriptor. ..3-104
3.1.3.4.4 Properties Descriptor. ...3-105
3.1.3.4.5 Device Package Descriptor...3-105
3.1.3.4.6 Device Configuration Descriptor..3-105

MSRC-5000SCA
rev. 2.2

iii

3.1.3.4.7 Profile Descriptor..3-105
3.1.3.4.8 DomainManger Configuration Descriptor. ..3-105

3.1.3.5 Core Framework Base Types. ...3-105
3.1.3.5.1 Data Type..3-105
3.1.3.5.2 DeviceSequence..3-105
3.1.3.5.3 FileException. ...3-106
3.1.3.5.4 InvalidFileName. ..3-106
3.1.3.5.5 InvalidObjectReference. ...3-106
3.1.3.5.6 InvalidProfile. ...3-106
3.1.3.5.7 OctetSequence. ...3-106
3.1.3.5.8 Properties. ...3-106
3.1.3.5.9 StringSequence. ..3-106
3.1.3.5.10 UnknownProperties...3-106
3.1.3.5.11 DeviceAssignmentType. ...3-106
3.1.3.5.12 DeviceAssignmentSequence. ..3-107
3.1.3.5.13 ErrorNumberType. ..3-107

3.2 Applications. .. 3-107
3.2.1 General Application Requirements. .. 3-107

3.2.1.1 OS Services. ..3-107
3.2.1.2 CORBA Services. ...3-108
3.2.1.3 CF Interfaces. ..3-108

3.2.2 Application Interfaces. .. 3-108
3.2.2.1 Service APIs..3-109

3.2.2.1.1 Service Definitions. ..3-109
3.2.2.1.2 API Transfer Mechanisms. ...3-109

3.3 Logical Device.. 3-110
3.3.1 OS Services. .. 3-111
3.3.2 CORBA Services. ... 3-112
3.3.3 CF Interfaces. .. 3-112
3.3.4 Profile.. 3-112

3.4 General Software Rules. ... 3-112
3.4.1 Software Development Languages. .. 3-112

3.4.1.1 New Software..3-112
3.4.1.2 Legacy Software..3-113

4 HARDWARE ARCHITECTURE DEFINITION... 4-1
4.1 Basic Approach.. 4-1
4.2 Class Structure. ... 4-1

4.2.1 Top Level Class Structure. .. 4-2
4.2.2 HWModule(s) Class Structure... 4-3
4.2.3 Class Structure with Extensions.. 4-3

4.2.3.1 RF Class Extension. ..4-4
4.2.3.2 Modem Class Extension..4-5
4.2.3.3 Processor Class Extension..4-6
4.2.3.4 INFOSEC Class...4-7
4.2.3.5 I/O Class Extension...4-8

MSRC-5000SCA
rev. 2.2

iv

4.2.4 Attribute Composition... 4-8
4.3 Domain Criteria. ... 4-9
4.4 Performance Related Issues. .. 4-9
4.5 General Hardware Rules. ... 4-9

4.5.1 Device Profile.. 4-9
4.5.2 Hardware Critical Interfaces. .. 4-10

4.5.2.1 Interface Definition. ..4-10
4.5.2.2 Interface Standards..4-10

4.5.2.2.1 Interface Selection. ...4-10
4.5.3 Form Factor. .. 4-10
4.5.4 Modularity... 4-10

5 SECURITY ARCHITECTURE DEFINITION .. 5-1
5.1 Additional CF Security Requirements. ... 5-1

5.1.1 Application. ... 5-1
5.1.2 ApplicationFactory. .. 5-1
5.1.3 DomainManager. .. 5-1

6 COMMON SERVICES AND DEPLOYMENT CONSIDERATIONS 6-1
6.1 Common System Services... 6-1
6.2 Operational and Deployment Considerations. ... 6-1

7 ARCHITECTURE COMPLIANCE .. 7-1
7.1 Certification Authority. .. 7-1
7.2 Responsibility for Compliance Evaluation. .. 7-1
7.3 Evaluating Compliance... 7-1
7.4 Registration.. 7-1

APPENDIX A. GLOSSARY

APPENDIX B. SCA APPLICATION ENVIRONMENT PROFILE

APPENDIX C. CORE FRAMEWORK IDL

APPENDIX D. DOMAIN PROFILE

MSRC-5000SCA
rev. 2.2

v

List of Figures
Figure 1-1. The Architecture Framework and its Relationship to Implementation1-2
Figure 1-2. Color Coding Used in Document Figures ..1-3
Figure 2-1. Software Structure..2-2
Figure 2-2. Example Message Flows with and without Adapters ..2-5
Figure 2-3. Software Reference Model ...2-5
Figure 2-4. Conceptual Model of Resources...2-7
Figure 2-5. Example of Modem Resources...2-8
Figure 2-6. Example of Networking Resources ..2-9
Figure 2-7. Examples of I/O Resources ..2-10
Figure 2-8. Examples of Security Devices and Resources ...2-11
Figure 2-9. Example of Utility Resources...2-12
Figure 2-10. External Network Protocols and SCA Support ..2-13
Figure 2-11. SCA-Supported Networking Mapped to OSI Network Model2-15
Figure 2-12. Hardware Architecture Framework..2-17
Figure 3-1. Notional Relationship of OE and Application to the SCA AEP3-1
Figure 3-2. Log UML..3-5
Figure 3-3. Core Framework IDL Relationships ..3-17
Figure 3-4. Port Interface UML..3-18
Figure 3-5. LifeCycle Interface UML..3-20
Figure 3-6. TestableObject Interface UML...3-22
Figure 3-7. PortSupplier Interface UML ..3-23
Figure 3-8. PropertySet Interface UML..3-25
Figure 3-9. Resource Interface UML..3-27
Figure 3-10. ResourceFactory Interface UML ...3-29
Figure 3-11. Application Interface UML ..3-33
Figure 3-12. Application Behavior..3-37
Figure 3-13. ApplicationFactory UML...3-38
Figure 3-14. ApplicationFactory Behavior ...3-44
Figure 3-15. DomainManager Interface UML ...3-45
Figure 3-16. DomainManager Sequence Diagram for registerDeviceManager Operation3-51
Figure 3-17. DomainManager Sequence Diagram for registerDevice Operation........................3-53
Figure 3-18. DomainManager Sequence Diagram for registerService Operation3-60
Figure 3-19. Device Interface UML..3-63
Figure 3-20. State Transition Diagram for adminState...3-66
Figure 3-21. State Transition Diagram for allocateCapacity and deallocateCapacity.................3-68
Figure 3-22. Release Aggregated Device Scenario...3-70
Figure 3-23. Release Composite Device Scenario ..3-70
Figure 3-24. Release Composite & Aggregated Device Scenario ..3-71
Figure 3-25. Release Composite Device in SHUTTING_DOWN State Scenario........................3-71
Figure 3-26. LoadableDevice Interface UML...3-73
Figure 3-27. ExecutableDevice Interface UML..3-76
Figure 3-28. AggregateDevice Interface UML ...3-79
Figure 3-29. DeviceManager UML ..3-82
Figure 3-30. DeviceManager Startup Scenario...3-86
Figure 3-31. File Interface UML ..3-90

MSRC-5000SCA
rev. 2.2

vi

Figure 3-32. FileSystem Interface UML ...3-93
Figure 3-33. FileManager Interface UML..3-100
Figure 3-34. Relationship of Domain Profile XML File Types..3-104
Figure 3-35. Standard and Alternate Transfer Mechanism...3-110
Figure 3-36. Logical Device Interface Relationships..3-111
Figure 4-1. Top Level Hardware Class Structure ...4-2
Figure 4-2. Hardware Module Class Structure ...4-3
Figure 4-3. RF Class Extension ..4-5
Figure 4-4. Modem Class Extension...4-6
Figure 4-5. Processor Class...4-7
Figure 4-6. INFOSEC Class..4-7
Figure 4-7. I/O Class Extension ..4-8
Figure 4-8. Typical Hardware Device Description using the SCA HW Class Structure................4-9

MSRC-5000SCA
rev. 2.2

vii

Foreword

Introduction. The Software Communication Architecture (SCA) specification is published by the
Joint Tactical Radio System (JTRS) Joint Program Office (JPO). This program office was
established to pursue the development of future communication systems, capturing the benefits of
the technology advances of recent years, which are expected to greatly enhance interoperability of
communication systems and reduce development and deployment costs. The goals set for the
JTRS program are:

− Greatly increased operational flexibility and interoperability of globally deployed systems,
− Reduced supportability costs,
− Upgradeability in terms of easy technology insertion and capability upgrades, and
− Reduced system acquisition and operation cost.

In order to achieve these goals, the SCA has been structured to

− provide for portability of applications software between different SCA implementations,
− leverage commercial standards to reduce development cost,
− reduce development time of new waveforms through the ability to reuse design modules,

and
− build on evolving commercial frameworks and architectures.

The SCA is deliberately designed to meet commercial application requirements as well as military
applications. It is the expectation of the Government that the basic SCA will become a
commercially approved standard. It is for this reason that a wide cross-section of industry has been
invited to participate in the development and the validation of the SCA. The SCA is not a system
specification, as it is intended to be implementation independent, but a set of rules that constrain
the design of systems to achieve the objectives listed above. The SCA specification version 1.0
established the baseline for architecture validation. The validation effort demonstrated that
multiple vendors could independently design systems, which, when built according to the SCA
requirements, meet the program goals outlined above. Lessons learned during the validation have
been incorporated in SCA version 2.0.

The SCA documentation consists of the basic architecture specification, a supplement on military
security, a supplement on definition of application program interfaces, and a rationale document.

Software Structure. The software framework of the SCA defines the Operating Environment
(OE) and specifies the services and interfaces that applications use from that environment. The OE
is comprised of:

- a Core Framework (CF),
- a CORBA middleware, and
- a POSIX-based Operating System (OS) with associated board support packages.

MSRC-5000SCA
rev. 2.2

viii

The OE imposes design constraints on waveform and other applications to provide increased
portability of those applications from one SCA-compliant radio platform to another. These design
constraints include specified interfaces between the Core Framework and application software, and
restrictions on waveform usage of the Operating System.

The SCA also provides a building block structure (defined in the API Supplement) for defining
application programming interfaces (APIs) between application software components. This
building-block structure for API definition facilitates component-level reuse and allows significant
flexibility for developers to define waveform-specific APIs.

Core Framework. The CF is an architectural concept defining the essential, “core” set of open
software Interfaces and Profiles that provide for the deployment, management, interconnection, and
intercommunication of software application components in embedded, distributed-computing
communication systems. All interfaces defined in section 3.1.3 of the SCA Specification are part
of the CF. Core Application Services developers implement some of them; some are implemented
by non-core Applications (i.e. waveforms, etc.); and some implemented by hardware device
providers. The CF builds an information base from the collection of profiles, known as the Domain
Profile and provided with the hardware and software of the system.

Hardware Structure. The hardware framework also uses OO concepts to define typical hardware
partitions within realizable systems. The primary purpose of the hardware structure is to require
complete and comprehensive publication of interfaces and attributes once systems have been built.
With these published specifications, additional venders can provide modules within a system and
software developers can identify hardware modules with capabilities required for a particular
waveform application. Hardware modularity also facilitates technology insertion as future
programmable elements increase in capability.

Military Applications. To maximize the commercial application of the SCA and the resulting
benefit, military-unique requirements are provided in SCA supplements. Currently there are two
supplements to the SCA Specification:

- a Security Supplement identifies requirements to insure adequate protection of military
secure communications and to facilitate certification of JTRS products by the NSA, and

- an API Supplement identifies structures associated with radio system services at various
interfaces such as physical, networking, security, and external interfaces. These APIs,
when fully defined, improve portability of applications within JTRS implementations, and
make reuse of functional components of those applications easier. For example,
standardizing APIs for a security module within a JTRS enables reuse of common modules
for multiple waveform applications. Standardizing networking APIs improves portability
of networking applications and offers easier internetworking functions such as routing,
bridging and providing gateways.

Support and Rationale Document (SRD). This document provides the rationale behind
architectural decisions along with further supporting material.

Future Directions. The JTRS JPO intends to maintain the SCA Specification and Supplements
over the next year. The goal of the JPO is to transition maintenance of the SCA to a commercial

MSRC-5000SCA
rev. 2.2

ix

open-standards organization. Changes to the SCA will be incorporated based upon lessons-learned,
industry recommendations, and technology improvements. Changes to the Supplements will
similarly incorporate lessons-learned as well as definitions of additional services such as Quality of
Service monitoring and Fault Management.

Feedback. An open architecture framework is greatly improved through active feedback and
recommended changes from a wide audience of potential users. The JTRS JPO solicits and
encourages feedback to this document and provides a form available from
http://www.jtrs.saalt.army.mil/docs/documents/sca.html. Send the completed form to
jtrs.sca@saalt.army.mil. Recommended additions to the SCA must be unencumbered by copyright
restrictions or intellectual property rights. Changes to the SCA are controlled by a JTRS JPO-
chaired Configuration Control Board (CCB).

http://www.jtrs.sarda.army.mil/docs/documents/sca.html
mailto:jtrs.sca@sarda.army.mil

MSRC-5000SCA
rev. 2.2

1-1

1 INTRODUCTION
The Software Communications Architecture (SCA) specification establishes an implementation-
independent framework with baseline requirements for the development of Joint Tactical Radio
System (JTRS) software configurable radios. These requirements are comprised of interface
specifications, application program interfaces (APIs), behavioral specifications, and rules. The
goal of this specification is to ensure the portability and configurability of the software and
hardware and to ensure interoperability of products developed using the SCA.

Companion documents to this specification are Supplements to the SCA and the SCA Support and
Rationale Document (SRD). The Supplements provide specific service and application interface
requirements (for Security, networking, other services). The SRD provides the rationale for the
SCA and examples to illustrate the implementation of the architecture for differing
domains/platforms and selected waveforms.

1.1 SCOPE.
This document provides a complete definition of the SCA. It is an Architecture Framework in that
it is precise in areas where reusability is effected and it is general in other areas so that unique
requirements of implementations determine the specific application of the architecture. The SCA
defines the hardware and software at different levels of detail to allow the broadest reusability and
portability of components.

For hardware, the physical and environmental differences across domains are so diverse that
physical commonality cannot be achieved for all implementations. However, by using an Object-
Oriented (OO) description for the hardware, represented as hardware classes, all potential system
implementations are included within a single framework. That framework has attributes (i.e.,
behavior and interfaces) that are applicable across those different implementations.

The architecture for software makes extensive use of object modeling and its definition is primarily
in the Core Framework (CF), an integral part of a system's Operating Environment (OE).
Constraints on the software development, imposed by the architecture, are on the interfaces and the
structure of the software and not on the implementation of the functions that are performed. In this
way, innovative designs can be put forward with appropriate protection of the developer’s
intellectual property and still reap the benefits of wide reuse in other implementations of the
architecture. The SCA permits either hardware or software to be used in implementing a required
function. The approach taken also permits legacy solutions to be incorporated, where appropriate,
by encapsulation techniques to provide a “one-sided” standard interface into architecture interfaces.

This architecture specifies rules that further constrain implementations to adhere to open system
standards. Specific implementation requirements may augment the rule-set to increase reusability
within and across domains.

Figure 1-1 illustrates the concept of the SCA and its implementation down to specific platforms.
The hardware definition stays at a framework level with rules providing implementation guidance
down into domains and platforms. The software definition can be applied directly down to
implementation because of its general independence from hardware implementation. There are
special cases where size, weight, and power requirements limit the direct application of software

MSRC-5000SCA
rev. 2.2

1-2

objects. However, even in these cases, reusability of designs, captured in software and firmware
modeling and simulation tools, reduces the cost of implementation and the development time.

Software Communications
 Architecture Framework

Domains

Implementation

H/W

Specific Objects
and Interface
Specifications

R
U
L
E
S

Classes and
Sub-classes

Core Framework
(CF)

Operating
Environment

(OE)

Object Models
& IDL

S/W

Specific Objects

Figure 1-1. The Architecture Framework and its Relationship to Implementation

1.2 COMPLIANCE.
The interfaces, behavior, and rules that define compliance with the SCA are identified in, and are
an integral part of this specification. These elements are selected to maximize portability,
interoperability, and configurability of the software and hardware while allowing a procurer the
flexibility to address domain requirements and restrictions. If any requirements stated in this
specification are in conflict with existing standards/specifications, this specification takes
precedence.

1.2.1 Joint Technical Architecture Compliance.

The Joint Technical Architecture (JTA) mandates the minimum set of standards and guidelines for
all DoD Command, Control, Communications, Computers, and Intelligence (C4I) systems
acquisition. A foremost objective of the JTA is to improve and facilitate the ability of systems to
support joint and combined operations in an overall investment strategy. The SCA Operating
Environment is developed for embedded real-time radio designs and supports the JTA where it is
applicable. The OE provides an architectural framework for a JTA system.

1.3 DOCUMENT CONVENTIONS, TERMINOLOGY, AND DEFINITIONS.

1.3.1 Conventions and Terminology.

1.3.1.1 Unified Modeling Language.
The Unified Modeling Language (UML), defined by the Object Management Group (OMG), is
used to graphically represent SCA interfaces, scenarios, use cases, and collaboration diagrams.

MSRC-5000SCA
rev. 2.2

1-3

1.3.1.2 Interface Definition Language.
Interface Definition Language (IDL), also defined by the OMG, is used to define the SCA
interfaces. IDL is programming language independent and can be compiled into programming
languages such as C++, Ada, and Java.

1.3.1.3 eXtensible Markup Language.
eXtensible Markup Language (XML) is used in a Domain Profile to identify the capabilities,
properties, inter-dependencies, and location of the hardware devices and software components that
make up an SCA-compliant system

1.3.1.4 Color Coding.
Color-coding is used to differentiate between architecture elements and applications in diagrams as
shown in Figure 1-2.

Core Framework (CF) elements

Commercial-Off-The-Shelf (COTS) components

Host Applications

Red Side Network and Link Applications

Security Applications

Black Side Network and Link Applications

Modem Applications

RF

Figure 1-2. Color Coding Used in Document Figures

1.3.1.5 Requirements Language.
Interfaces, behavior, and rules that are imposed by this specification appear in sections 3 through 5
and are indicated by the word "shall". Editorial notes are contained within brackets and are
italicized ({example}).

1.3.1.6 CF Interface and Operation Identification.
CF interfaces and their operations are presented in italicized text. Core Framework Base Types
(3.1.3.5) are prefixed with “CF” when used in textual descriptions (e.g. "each item value is a CF
Properties type").

1.3.2 Definitions.

Definitions are included in Appendix A.

MSRC-5000SCA
rev. 2.2

1-4

1.4 DOCUMENT CONTENT.
This document provides an overview of the SCA in section 2, followed by the Software, Hardware,
and Security architecture requirements in sections 3 – 5. Section 6 addresses requirements not
contained in those functional categories. Evaluation criteria for product compliance to this
specification are addressed in section 7.

Appendices include a glossary, a complete listing of CF IDL, and details of architecture
requirements introduced in the main document.

1.5 APPLICABLE DOCUMENTS.
The following documents are applicable to the SCA either by direct reference or as foundation for
the architecture definition.

1.5.1 Government Documents.

Joint Technical Architecture, Version 2.0, 26 May 1998.

Operational Requirements Document (ORD) for the Joint Tactical Radio System (JTRS), Version
2.2, 30 January 2001.

1.5.2 Commercial Documents.

C Standard: Programming languages – C, ISO/IEC 9899:1990.

DCE UUID standard (OSF Distributed Computing Environment, DCE 1.1 Remote Procedure Call).

“Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley Professional
Computing) Gamma, Helm, Johnson, and Vlissides.

IEEE 802.1 [Medium Access Control (MAC) addresses] IEEE Standards for Local and
Metropolitan Area Networks: LAN/MAN Bridging & Management.

ISO/IEC 10731 Conventions for the Definition of OSI Services, Annex D Alternative and
Additional Time Sequence Diagrams for Two-party Communications.

minimumCORBA: OMG Document orbos/98-05-13, May 19, 1998.

OMG Document formal/00-11-01: Interoperable Naming Service Specification.

OMG Event Service: OMG Document formal/01-03-01: EventService, v1.1.

OMG Event Service IDL: OMG Document formal/01-03-02: EventService IDL, v1.1.

POSIX.1: Application Program Interface ISO/IEC 9945:1996

POSIX 1003.13: Standardized Application Environment Profile - POSIX Realtime Application
Support (AEP), IEEE Std 1003.13-1998.

UML: OMG (Object Management Group) Unified Modeling Language Specification, Version 1.3,
March 2000.

 POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

MSRC-5000SCA
rev. 2.2

1-5

XML: W3C (World Wide Web Consortium) Recommendation: Extensible Markup Language
(XML) 1.0, Feb 1998.

MSRC-5000SCA
rev. 2.2

2-1

2 OVERVIEW
This Section presents an overview of the SCA. Emphasis is on identifying the components of
the architecture and the manner in which these components interact. Technical details and
requirements of the architecture are contained in Sections 3 - 5.

2.1 ARCHITECTURE DEFINITION METHODOLOGY.
The architecture has been developed using an object-oriented approach wherein the process can
be continued beyond the framework definition to product development. UML is used to
graphically represent interfaces while IDL is used to define them; both have been generated
using standard software development tools, allowing product development to continue directly
from the architecture definition.

2.2 ARCHITECTURE OVERVIEW.

2.2.1 Overview - Software Architecture.

The structure of the software architecture is shown in figure 2-1. The key benefits of the
software architecture are that it:

1. Maximizes the use of commercial protocols and products,

2. Isolates both core and non-core applications from the underlying hardware through
multiple layers of open, commercial software infrastructure, and

3. Provides for a distributed processing environment through the use of the Common Object
Request Broker Architecture (CORBA) to provide software application portability,
reusability, and scalability.

The software architecture defines an Operating Environment (OE) with the combined set of CF
services and infrastructure software (including board support packages, operating system and
services, and CORBA Middleware services) integrated in an SCA implementation. The software
partitions that illustrate applications are typical of how waveforms might be implemented using
the SCA.

MSRC-5000SCA
rev. 2.2

2-2

Core Framework (CF)
Commercial Off-the-Shelf

(COTS)

Applications

OE

 Red Hardware Bus

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Serial Interface Services

Board Support Package (Bus Layer)

Black Hardware Bus

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Serial Interface Services

Board Support Package (Bus Layer)

Operating System

Core Framework IDL

Non-CORBA
Modem

Components

Non-CORBA
Security

Components

Non-CORBA
 I/O

Components

RF

Modem
Components

Link, Network
Components

Security
Components

Modem
Adapter

Security
Adapter

Security
Adapter

 I/O
Adapter

 I/O
Components

MAC API LLC/Network API LLC/Network API

Link, Network
Components

Security API

Operating System

Physical
API

I/O API

(“Logical Software Bus” via CORBA)

Figure 2-1. Software Structure

2.2.1.1 Bus Layer (Board Support Package).
The Software Architecture is capable of operating on commercial bus architectures. The OE
supports reliable transport mechanisms, which may include error checking and correction at the
bus support level. Possible buses include VME, PCI, CompactPCI, Firewire (IEEE-1394), and
Ethernet. The OE does not preclude the use of different bus architectures on the Red and Black
subsystems.

2.2.1.2 Network & Serial Interface Services.
The Software Architecture relies on commercial components to support multiple unique serial
and network interfaces. Possible serial and network physical interfaces include RS-232, RS-422,
RS-423, RS-485, Ethernet, and 802.x. To support these interfaces, various low-level network
protocols may be used. They include PPP, SLIP, LAPx, and others. Elements of waveform
networking functionality may also exist at the Operating System layer. An example of this
would be a commercial IP stack that performs routing between waveforms.

2.2.1.3 Operating System Layer.
The Software Architecture includes real-time embedded operating system functions to provide
multi-threaded support for applications (including CF applications). The architecture requires a
standard operating system interface for operating system services in order to facilitate portability
of applications.

Portable Operating System Interface (POSIX) is an accepted industry standard. POSIX and its
real-time extensions are compatible with the requirements to support the OMG CORBA

MSRC-5000SCA
rev. 2.2

2-3

specification. Complete POSIX compliance encompasses more features than are necessary to
control a typical implementation. Therefore, this specification defines a minimal POSIX profile
to meet SCA requirements. The SCA POSIX profile is based upon the Real-time Controller
System Profile (PSE52) as defined in POSIX 1003.13.

2.2.1.4 Core Framework.
The CF is the essential (“core”) set of open application-layer interfaces and services to provide
an abstraction of the underlying software and hardware layers for software application designers.
Section 3 presents the complete definition of all services and interfaces of the CF. The CF
consists of:

1. Base Application Interfaces (Port, LifeCycle, TestableObject, PropertySet,
PortSupplier, ResourceFactory, and Resource) that can be used by all software
applications,

2. Framework Control Interfaces (Application, ApplicationFactory, DomainManager,
Device, LoadableDevice, ExecutableDevice, AggregateDevice and DeviceManager)
that provide control of the system,

3. Framework Services Interfaces that support both core and non-core applications (File,
FileSystem, FileManager, and Timer), and

4. A Domain Profile that describes the properties of hardware devices (Device Profile)
and software components (Software Profile) in the system.

The Domain Profile supports the combination of resources to create applications. Device Profile
and Software Profile files utilize an XML vocabulary to describe specific characteristics of either
software or device components with regard to their interfaces, functional capabilities, logical
location, inter-dependencies, and other pertinent parameters.

2.2.1.5 CORBA Middleware.
CORBA is used in the CF as the message passing technique for the distributed processing
environment. CORBA is a cross-platform framework that can be used to standardize
client/server operations when using distributed processing. Distributed processing is a
fundamental aspect of the system architecture and CORBA is a widely used “Middleware”
service for providing distributed processing.

All CF interfaces are defined in IDL. The CORBA protocol provides message marshalling to
handle the bit packing and handshaking required for delivering the message. The SCA IDL
defines operations and attributes that serve as a contract between components.

2.2.1.6 Application Layer.
Applications perform user communication functions that include modem-level digital signal
processing, link-level protocol processing, network-level protocol processing, internetwork
routing, external input/output (I/O) access, security, and embedded utilities. Applications are
required to use the CF interfaces and services. Applications' direct access to the Operating
System (OS) is limited to the services specified in the SCA POSIX Profile. Networking
functionality that may be implemented below the application layer, such as a commercial IP
network layer, is not limited to the SCA POSIX Profile since it exists in the OS kernel space.

MSRC-5000SCA
rev. 2.2

2-4

2.2.1.6.1 Applications.
Applications consist of one or more Resources. The Resource interface provides a common API
for the control and configuration of a software component. The application developers can
extend these definitions by creating specialized Resource interfaces for the application. At a
minimum, the extension inherits the Resource interface. Examples of Resource extensions are:
LinkResource, NetworkResource, and UtilityResource.

Devices are types of Resources used by applications as software proxies for actual hardware
devices. ModemDevice, I/ODevice, and SecurityDevice are examples that implement the Device
interfaces.
ModemDevice, LinkResource, SecurityDevice, I/ODevice, and NetworkResource are Core
Framework interface extensions that implement APIs for waveform and networking applications.

The design of a Resource’s internal functionality is not dictated by the Software Architecture.
This is left to the application developer. Core applications, which are a part of the CF, support
the non-core applications by providing the necessary function of control as well as standard
interface definitions. The interfaces by which a Resource is controlled and communicates with
other Resources are defined in section 3.

2.2.1.6.2 Adapters.
Adapters are Resources or Devices used to support the use of non-CORBA capable elements in
the domain. Adapters are used in an implementation to provide the translation between non-
CORBA-capable components or devices and CORBA-capable Resources. The Adapter concept
is based on the industry-accepted Adapter design pattern1. Since an Adapter implements the CF
CORBA interfaces known to other CORBA-capable Resources, the translation service is
transparent to the CORBA-capable Resources. Adapters become particularly useful to support
non-CORBA-capable Modem, Security, and Host processing elements. Figure 2-2 depicts an
example of message reception flow through the system with and without the use of Adapters.
Modem, Security, and Host Adapters implement the interfaces marked by the circled letters M,
S, and H respectively. Notice that the Waveform Link and Network Resources are unaffected by
the inclusion or exclusion of the Adapters. The interface to these Resources remains the same in
either case.

1 “Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley
Professional Computing) Gamma, Helm, Johnson, and Vlissides, pg. 139

MSRC-5000SCA
rev. 2.2

2-5

CORBA
SecurityDevice

Host
Adapter

RF

Non-CORBA
Host

CORBA
 HostResource

Waveform
NetworkResource

Waveform
 LinkResource

Non-CORBA
Modem

CORBA
ModemDevice

S

S

S

SM

M

(2) (3) (4) (5)

(1)

(1)

(2)

(3) (4)

(5) (6)

(7) (8)

(9)

 Message Reception Path (with Adapters)
 (1) RF Interface to Modem
 (2) non-CORBA Modem Interface
 (3) CORBA Interface to Waveform Link
 (4) CORBA Interface to Security Adapter
 (5) Black-side non-CORBA Security Interface
 (6) Red-side non-CORBA Security Interface
 (7) CORBA Interface to Waveform Network
 (8) CORBA Interface to Host Adapter
 (9) non-CORBA Host Interface

 Message Reception Path (without Adapters)
 (1) RF Interface to Modem
 (2) CORBA Interface to Waveform Link
 (3) CORBA Interface to Security
 (4) CORBA Interface to Waveform Network
 (5) CORBA Interface to Host

M

S

S Note: The design goal of a CORBA gateway “Adapter” is to
define the CORBA side of the gateway such that the eventual
replacement of the non-CORBA device and its Adapter does
not change the Core Framework CORBA interface.

Modem
Adapter

Security
Adapter

Security
Adapter

H

H

H

M
S

S
H

Non-CORBA
SecurityDevice

Figure 2-2. Example Message Flows with and without Adapters

2.2.1.7 Software Radio Functional Concepts.
2.2.1.7.1 Software Reference Model.
The software reference model depicted in Figure 2-3 is based upon the Programmable Modular
Communication System (PMCS) Reference Model. This model forms a basis for the SCA by:

1. Introducing the various functional roles performed by software entities without
dictating a structural model of these elements, and

2. Introducing the control and traffic data interfaces between the functional software
entities.

Analog

Control

RF Modem Security Internetwork
Utility,
Router,

Network,
Bridge,

Link

Digital Data

System Control

HCI (Control)

Security Monitor
(part of INFOSEC)

Air

I/O

HCI
(Data)

Black Proc.
Utility,
Router,

Network,
Bridge,

Link

Antenna

Utility,
Access

Utility,
Access

Waveform,
Repeater

Waveform

Figure 2-3. Software Reference Model

MSRC-5000SCA
rev. 2.2

2-6

The Reference Model identifies relevant functionality but does not dictate the architecture. The
SCA realizes the Software Reference Model by defining a standard unit of functionality called a
Resource. All applications are comprised of Resources and using Devices. Specific resources
and devices can be identified corresponding to the functional entities of the Software Reference
Model:

ModemDevice: addresses Antenna, RF, and Modem entities,
LinkResource: addresses Black Processing entity,
SecurityDevice: addresses Security entity,
NetworkResource: addresses Internetworking entity,
I/ODevice: addresses external interfaces such as serial, Ethernet, and audio
UtilityResource: addresses non-Waveform functionality.

System control entity functionality is addressed by the core framework applications: Application,
ApplicationFactory, DomainManager, Device, LoadableDevice, ExecutableDevice,
AggregateDevice, and DeviceManager. Control functionality may also be localized in individual
resources.

Figure 2-4 shows examples of implementation classes for Resources. The operations and
attributes provided by LifeCycle, TestableObject, PortSupplier, and PropertySet establish a
common approach for interacting with any resource in a SCA environment. Port can be used for
pushing or pulling messages between Resources and Devices. A Resource may consist of zero or
more input and output message ports. The figure also shows examples of more specialized
resources and devices that result in specific functionality for each of six example types.
Clarification of the functionality associated with each of those is provided in the following
subsections. Examples of Devices in the following sections and figures can be examples of
Device, LoadableDevice, and ExecutableDevice.

MSRC-5000SCA
rev. 2.2

2-7

Figure 2-4. Conceptual Model of Resources

2.2.1.7.2 ModemDevice Functionality.
The ModemDevice provides a standard for the control and interface of a modem, which
encapsulates diverse implementations of smart antenna, RF, and modem functions. The base
application interfaces are extended to modem devices through a Physical, Medium Access
Control (MAC), or Logical Link Control (LLC) API (see the API Supplement to the SCA),
which provides a standard interface for control and communication with modem operations from
a higher (e.g., link layer to a MAC) resource. The functions, performed by the ModemDevices,
will vary depending on waveform requirements as well as hardware/software allocation and are
not dictated by the CF. Typical RF and modem functions are depicted in Figure 2-5.

LinkResource

LLC API

Waveform
LinkResource

Bridge
Resource

are example types of

Base Application Interfaces

Security
DomainDevice

SecurityDevice

Waveform
ModemDevice

AudioDevice

I/ODevice

are example types of

SitAwareResourceMsgFilterResource

UtilityResource

are example types of

Waveform
NetworkResource

NetworkResource
Network API

Repeater
Device

Router
Resource

Gateway
Resource

are example types ofare example types ofare example types of

Modem
Adapter

Security
Adapter

Serial
Device

Host
Adapter

ModemDevice
MAC or Physical API

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Ethernet
Device

Security API

are example types ofare example types of

Port LifeCycle TestableObject PropertySet

Device Resource

PortSupplier

MSRC-5000SCA
rev. 2.2

2-8

Modulate Demodulate
Interleave Deinterleave
FEC_Encode FEC_Decode
Spread Despread
Filter Synchronize
Track Correlate
AcquirePacket SchedulePacket
TimeStamp TRANSEC
selfTest

1

0..*
Device

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Resource

LinkResource

LLC API

ModemDevice
Physical or MAC API

WaveformModemDevice WaveformRF_AdapterDevice RepeaterAdapterDeviceModemAdapterDevice

TranslateModem

1..*1

UpConvert
DownConvert
GainControl
LevelControl
FrequencyControl
Equalize
Filter
BeamSteer
InterferenceNull
selfTest

Retransmit
ControlModem

are example types of

are example types of

Figure 2-5. Example of Modem Resources

2.2.1.7.3 NetworkResource and LinkResource Functionality.
An example of networking resources is shown in figure 2-6. The CF base application interfaces
are extended to link layer and network layer resources through APIs (see section 2.2.2.2),
provided to enable information transfer and support of specific service characteristics for
networking applications. Examples are the Link-LLC API and Network-MAC API, which
provide standard interfaces for control and communication between network, link, and transport
layer resources.

The functions performed by the waveform networking and internetworking resources (examples
shown in note boxes in figure 2-6) will vary depending on waveform requirements as well as
networking requirements and are not dictated by the CF. Resources that provide networking
behavior, including repeater, link, bridge, network, router, and gateway operations, are
representative and not defined in the SCA.

MSRC-5000SCA
rev. 2.2

2-9

1

0..*
Resource

WaveformLinkResource

LinkResource

LLC API

NetworkResource

Network API

ModemDevice

Physical API

UtilityResource

RepeaterDevice GatewayResource

11..*
1

1..* 1
1..*

are example types of are example types of

Packetize
SchedulePacket
PrioritizePacket
AddressPacket
RoutePacket
MeasureLinkQuality
AnalyzeLinkQuality
ControlModem
selfTest

Retransmit
ControlModem

BridgeResource

ForwardPacket
ForwardQoS
PrioritizePacket
AddressPacket

RouterResource

TranslateAddress
Route
Multicast
Broadcast
DiscoverMobileNode
MaintainRoutingTable
ForwardQoS

TranslateMessage
TranslateVoice
TranslateVideo

WaveformNetworkResource

RouteMessage
MulticastMessage
BroadcastMessage
DiscoverNeighbor
MaintainRoutingTable
ForwardQoS
MeasureNetworkQuality
AnalyzeNetworkQuality
selfTest

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Device

are example types ofexample type of

Figure 2-6. Example of Networking Resources

2.2.1.7.4 I/ODevice Functionality.
Examples of I/ODevices are shown in Figure 2-7. An I/ODevice provides access to system
hardware devices and external physical interfaces. The operations performed by an I/ODevice
will vary depending on the system hardware assets as well as the physical interfaces to be
supported and are not dictated by the CF. Typical I/O operations are depicted within the
example subclasses.

MSRC-5000SCA
rev. 2.2

2-10

Device

I/ODevice

 are example types of

NetworkResource
Network API

UtilityResource

LinkResource

LLC API

1

1..*

1..*

1..*

1

1

SerialDevice EthernetDevice AudioDevice

ConfigurePort
EncodeAudio
DecodeAudio
TransmitMessage
ReceiveMessage
selfTest

ConfigurePort
TransmitMessage
ReceiveMessage
selfTest

ConfigurePort
TransmitMessage
ReceiveMessage
selfTest

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Resource
1

0..*

are example types of

example type of

Figure 2-7. Examples of I/O Resources

2.2.1.7.5 SecurityDevice Functionality.
Examples of SecurityDevice and SecurityResource are shown in Figure 2-8. Typical security
operations are depicted within the example subclasses. SecurityDevice subclasses extend
security functions to hardware devices within the system while SecurityResource subclasses
extend security functions to software components. There can be a wide variation of security
solutions both in hardware and software. Transmission security (TRANSEC) and
communications security (COMSEC) requirements also vary between waveforms. The location
of the security boundary with respect to networking requirements also varies between
waveforms. The CF base application interfaces are extended to SecurityResources through
Security APIs, which provide standard interfaces for control and communication between
security devices and resources and application waveforms.

MSRC-5000SCA
rev. 2.2

2-11

External INFOSECDevice

Device

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

1

0..*
Resource

SecurityDevice

NetworkResource
Network API

LinkResource

LLC API

Security API

I/ODevice

UtilityResourceModemDevice

MAC or Physical API
1..*1..*

1..*

1..* 1..*

1..*

1..* 1..*

1..*

1..*

INFOSECAdapterDevice

TranslateINFOSEC

EmbeddedINFOSECDevice

are example types of

SecurityResource

Security API

TRANSEC_Resource

Generate TRANSEC
 Stream

Guard_Resource

Control Data Path
Control Access
Monitor Security

are example types of
Encrypt

Decrypt

Synchronize/Resynchronize

Zeroize

Load Key
Authenticate

Bypass

GenerateTRANSECStream

are example types of are example types of

Figure 2-8. Examples of Security Devices and Resources

MSRC-5000SCA
rev. 2.2

2-12

2.2.1.7.6 UtilityResource Functionality.
An example of UtilityResource is shown in Figure 2-9. The operations performed by the utility
resources will vary depending on the embedded applications to be supported as well as host
interface protocol requirements and are not dictated by the CF. Typical utility operations are
depicted within the example subclasses. Ultimately, the UtilityResource encompasses any non-
waveform application that could execute in an SCA-compliant system.

2.2.1.8 System Control.
The SCA provides a specification for interfaces, services, and data formats for the control of
resources. Each resource establishes its controllable parameters with the DomainManager via a
Domain Profile. Applications constrain each resource's parameter values to their own needs.
Applications' controllable parameters are also in the Domain Profile.

Use of CORBA and the base application interfaces provides the means to have domain and
application control though a common interface. SerialDevice and EthernetDevice (in Figure 2-7)
are examples of the external interfaces available to a user. These examples show that system
control operations operate with human or machine interfaces either locally or remotely and
interact in a manner that facilitates portability.

Non-CORBA user terminals are interfaced through the use of Adapters.

1

Device

 are example types of

HostAdapterResource

TranslateHost

GatewayResource SitAwareResource

NetworkResource
Network API

UtilityResourceLinkResource

LLC API

1

1..*

1..*

1..*
1

I/ODevice

CollectPositionReports
ConsolidatePositionReports
DisseminatePostionReports
selfTest

TranslateMessage
TranslateVoice
TranslateVideo
selfTest

MsgFilterResource

TypeFilter
GeographicFilter
PriorityFilter
selfTest

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Resource
1

0..*

are example types of

Figure 2-9. Example of Utility Resources

MSRC-5000SCA
rev. 2.2

2-13

2.2.2 Networking Overview.

SCA-compliant Radio Systems communicate with peer systems through protocols as shown in
Figure 2-10. The external networking protocols between an SCA-compliant System and its peers
are part of waveform applications and are not specified by this architecture specification.
However, the interface definitions for the services required to implement the protocols within a
SCA-compliant System are specified (in the API Supplement).

Peer
Radio

System

SCA
Radio

System
Peer
Host

System

Peer
SCA Radio

System

ModemDevice

LinkResource

NetworkResource

LLC
API

Service
Definition

Networking

Transfer

Mechanism
Protocol
Entities

Typically each external networking protocol
will be implemented by a different set of

one or more protocol entities.

External
Networking

Protocols

Typically
CORBA IDL,
GIOP, & IIOP

MAC or
Phyiscal API

Service
Definition

Figure 2-10. External Network Protocols and SCA Support

MSRC-5000SCA
rev. 2.2

2-14

2.2.2.1 External Networking Protocols.
External networking protocols define the communications between a SCA-compliant Radio
System and its peer systems. These external-networking protocols can run over wireless or
wireline physical media. Example protocols include Single Channel Ground/Airborne Radio
System (SINCGARS), Ethernet, HF Automatic Link Establishment (ALE), IEEE 802.11, IS-
95A, IP, and future networking protocols.

Through the external networking protocols, implemented by applications in a SCA-compliant
radio system and its peer systems, a network of nodes is formed interconnected by repeaters,
bridges, routers, and/or gateways. As shown in Figure 2-11, external-networking protocols will
typically interconnect at different layers using:

1. Physical layer interconnections with a repeater function,

2. Link layer interconnections with a bridge function,

3. Network layer interconnections with standard network routing, and/or

4. Upper layer interconnections with application gateways.

The different categories of interoperability are outlined below based upon the OSI Model. There
may be multiple levels of interoperability within the same system on a waveform-by-waveform
basis.

A. Physical Layer Interoperability. The external networking protocols provide a
compatible physical interface, including the signaling interface, but no higher layer
processing. This level of interoperability is adequate for a simple bit-by-bit bridging
or relay operation between two interfaces.

B. Link Layer Interoperability. The external networking protocols provide link layer
processing over all physical interfaces. This level of interoperability is adequate for
allowing the radio to be used as transport and for allowing the radio to use another
network as transport. Intelligent routing or switching decisions are limited to local
layer 2 routing.

C. Network Layer Interoperability. The external networking protocols provide network
layer address processing interoperability. The radio and the networks being inter-
operated are sub-networks of the same Inter-network. At this level, intelligent
switching and routing decisions can be made end-to-end.

D. Host Level Interoperability (Layers 4 – 7). Embedded applications can exchange
information with hosts attached to the network. An example of this is a handheld
radio that contains embedded Situation Awareness (SA) application exchanging SA
updates with a vehicular platform in an external sub-network. In this example, the
radio provides message payload translations to allow two otherwise incompatible
hosts to communicate.

MSRC-5000SCA
rev. 2.2

2-15

7 - Application
6 - Presentation
5 - Session

4 - Transport

3
-
N
e
t
w
o
r
k

2 - Link

1 - Physical

3B
Inter-

network

3A
Sub-

network

OSI Layers

Repeater
Resource

 Waveform
Modem
Device

Network API

Physical API

 Waveform
 Modem
Device

Bridge
Resource

 Waveform
Link

Resource

 Waveform
Link

Resource

Waveform Network
Resource

Router
Resource

Gateway
Resource

Utility
Resource

Utility
Resource

LLC API

Wireless to Wireless

RFRF

 Waveform
Modem
Device

Network API

LLC API

Physical
API

 Wireline

Bridge
Resource

 Waveform
Link

Resource

 Wireline
Link

Resource

Waveform Network
Resource

Router
Resource

Gateway
Resource

Utility
Resource

Utility
Resource

LLC API

Wireless to Wireline

Intra-networking
Resource

Lower
Layer

Resource

Lower
Layer

Resource

(Inter-)Networking
Resource

Inter-Networking
Resource

Lower Layer API

Symbology

1 1

2

1

• Traffic Flow is up one side
of protocol stack and down
the other side

• Traffic flow up or down the
protocol stack is shown via
 & while traffic flow
from one side of the
protocol stack to the other
is shown by & .

• The Lower Layer API
interface is used for flows
 & while the Upper
Layer API is used for
flow .

• Resources shown as
can flow data vertically,
Resources shown as
can flow data horizontally,
and Resources shown as

can flow data
vertically and/or
horizontally.

2

Upper Layer API3 3

4

3

4

1 2

3

RFRF RFRF

Inter-network
Resource

Inter-network
Resource

LLC API

Waveform
Intra-network

Resource

 Waveform
Intra-network

Resource

Figure 2-11. SCA-Supported Networking Mapped to OSI Network Model

2.2.2.2 SCA Support for External Networking Protocols.
Figure 2-10 shows that within an SCA-compliant Radio System, application protocol entities are
used to implement the external networking protocols. These protocol entities are networking
applications2. Entity types that support external networking protocols include ModemDevice,

2 External networking protocol entities can reside within an application or within the kernel
space of operating systems. These external networking protocol applications are not necessarily
the same as OSI layer 7 applications. (When an application uses protocol entities within the OS
kernel space, and that kernel space is also used for internal system CORBA transport protocol,

MSRC-5000SCA
rev. 2.2

2-16

LinkResource, NetworkResource, SecurityDevice, I/ODevice, and UtilityResource. Typically,
each waveform or wireline protocol will be implemented by a unique set of one or more protocol
entities. A unique set of protocol entities implements the protocol stack specified by a waveform
or wireline protocol. A radio system implementing multiple waveform applications may have
multiple protocol entities at each protocol layer.

In order to support application portability, standard interfaces are required between application
protocol entities. These Networking APIs support the concept of a service interface between a
service provider (usually the lower OSI protocol layer) and a service user (usually the higher OSI
protocol layer).

Networking APIs, like other waveform application APIs, are extensions to the CF base
application interfaces that are inherited from the CF Resource class. APIs can be extended
allowing vendors to provide value-added features that distinguish themselves from their
competitors.

Two Networking API types are illustrated in this section: an LLC API associated with the
LinkResource and a Network API associated with the NetworkResource. The APIs can be
mapped into the OSI Networking Protocol model as shown in Figure 2-11. This figure shows
two very similar protocol stacks for wireless-to-wireless networking and wireless-to-wireline
networking. The difference is that the wireline stack has a WirelineDevice at the physical layer
instead of a ModemDevice. (Note that the OSI network layer maybe split into multiple network
resources as shown in Figure 2-11. In most cases, the layer 3A sub-network has an LLC API to
the upper layer 3B inter-network (for example when layer 3B is IP). However, for some network
waveform protocols, the layer 3A interface may be the network API).

The SCA defines an API Instance to provide the mechanism for distributing the protocol layers
within a SCA-compliant Radio System. An API Instance is a coupling of a Networking API
Service Definition and a Transfer Mechanism for a particular waveform implementation. The
Service Definition for a waveform details the primitives (operations), the parameters (variables),
their representation (structures, types, formats), and its behavior. The transfer mechanism
provides the communication between the waveform protocol layer service provider and a service
user. CORBA is the preferred transfer mechanism. Because security requirements for a
particular implementation may be met using services associated with CORBA, later introduction
of a different transfer mechanism requires careful analysis of the security services that can be
provided by that transfer mechanism. Figure 2-10 shows the relationship between protocol
entities, Service Definitions, and Transfer Mechanisms.

2.2.3 Overview - Hardware Architecture.

Partitioning the hardware into classes places emphasis on the physical elements of the system
and how they are composed of functional elements. These classes define common elements
sharing physical attributes (characteristics and interfaces) that carry over to implementation for
specific domain platforms. The same framework applies to all domains. Appropriate application
of the requirements leads to common hardware modules for different platforms. A summary
view of the hardware framework is shown in figure 2-12.

additional security protection may be required to prevent external network nodes from directly
connecting with internal CORBA objects.)

MSRC-5000SCA
rev. 2.2

2-17

SCA-Compliant Hardware

Chassis

RF Modem Processor INFOSEC

Power Supply GPS Reference Standard

I/O

HW Module(s)

Figure 2-12. Hardware Architecture Framework

The HWModule(s) class inherits the system level attributes from the SCA-Compliant Hardware
class. Classes below the HWModule(s) class inherit the attributes of that class. The attributes
are the parameters that define domain-neutral hardware devices, and the values assigned to the
attributes satisfy requirements for a selected implementation. The hardware devices, which are
the physical implementation of these classes, will have values for the relevant attributes based on
a platform’s physical requirements and the procurement performance requirements. Some
attributes are used in the creation of waveform applications and provided in a Device Profile,
readable by CF applications.

The Chassis Class has unique physical, interface, platform power, and external environment
attributes that are not shared with the modules in the chassis. Software Architecture Definition

MSRC-5000SCA
rev. 2.2

3-1

3 OPERATING ENVIRONMENT.
This section contains the requirements of the operating system, middleware, and the CF
interfaces and operations that comprise the OE.

3.1.1 Operating System.

The processing environment and the functions performed in the architecture impose differing
constraints on the architecture. An SCA application environment profile (AEP) is defined to
support portability of waveforms, scalability of the architecture, and commercial viability.
POSIX specifications are used as a basis for this profile. The notional relationship of the OE and
applications to the SCA AEP is depicted in figure 3-1. The OS shall provide the functions and
options designated as mandatory by the AEP defined in Appendix B. The OS is not limited to
providing the functions and options designated as mandatory by the profile. The CORBA Object
Request Broker (ORB), the CF Framework Control Interfaces, Framework Services Interfaces,
and hardware device drivers are not limited to using the services designated as mandatory by the
profile.

Logical Device is an Adapter for
the HW-specific devices

non-CORBA components
 or

device drivers

Core Framework:
Framework Control &

Framework Services Interfaces

applications' Resources,
CF Base Application
Interfaces

CORBA ORB

applications use CF for
all File accessCORBA API

OS access
limited to
SCA AEP

OS access
unlimited

OS access
unlimited

OS (function) that supports SCA

(unlimited proprietary APIs for system
development).

Any vendor-provided OS
function calls

(non-CORBA
components provide
access to hardware
devices / functionality
not available on a
CORBA-capable
processor)

Figure 3-1. Notional Relationship of OE and Application to the SCA AEP

MSRC-5000SCA
rev. 2.2

3-2

The OS and related file systems shall support at a minimum a file name length of 40 characters
and at a minimum a combined pathname/filename length of 1024 characters.

Applications are limited to using the OS services that are designated as mandatory for the profile.
Applications will perform file access through the CF. (Application requirements are covered in
section 3.2.)

3.1.2 Middleware & Services.

3.1.2.1 CORBA.
The OE shall use middleware that, at a minimum, provides the services and capabilities of
minimumCORBA as specified by the OMG Document orbos/98-05-13, May 19, 1998.

3.1.2.2 CORBA Extensions.
The following extensions and/or services above and beyond minimumCORBA are allowed.

3.1.2.2.1 Naming Service.
A CORBA Naming Service shall be provided in the OE. A CORBA Naming Service supplied by
an OE shall support the CosNaming CORBA module and its NamingContext interface’s
operations: bind, bind_new_context, unbind, destroy, and resolve. These operations shall meet
the requirements of OMG Document formal/00-11/01: Interoperable Naming Service
Specification.

A Naming Service’s NameComponent structure is made up of an id-and-kind pair. The “id”
element of each NameComponent is a string value that uniquely identifies a NameComponent.
The “kind” element of each NameComponent shall be “” (null string).

3.1.2.3 Log Service.
3.1.2.3.1 Use of Log Service.
This section describes the requirements for components that produce log records. A log
producer is a CF component (e.g., DomainManger, Application, ApplicationFactory,
DeviceManager, Device) or an application’s CORBA capable component (e.g., Resource,
ResourceFactory) that produces log records. (A component that calls the writeRecords operation
of the Log interface.)

A standard record type is defined for all log producers to use when writing log records. The log
producer may be configured via the PropertySet interface to output only specific log levels.

Log producers shall implement a configure property with an ID of
“PRODUCER_LOG_LEVEL”. The PRODUCER_LOG_LEVEL configure property provides
the ability to “filter” the log message output of a log producer. The type of this property shall be
a LogLevelSequence. The configure property LogLevelSequence will contain all log levels that
are enabled. Only the messages that contain an enabled log level shall be sent by a log producer
to a Log. Log levels that are not in the LogLevelSequence are disabled.

Log producers shall use their component identifier in the producerId field of the
ProducerLogRecord.

Log producers shall operate normally in the case where the connections to a Log are nil or an
invalid reference.

MSRC-5000SCA
rev. 2.2

3-3

Log producers shall output only those log records that correspond to enabled LogLevelType
values.

3.1.2.3.2 LogService Module.
The LogService module contains the Log servant interface and the types necessary for a log
producer to generate standard SCA log records. This module also defines the types necessary to
control the logging output of a log producer. Components that produce logs are required to
implement configure properties that allow the component to be configured as to what log records
it will output.

An SCA Log Service, as specified in this section, may be provided in a JTRS installation.

The optional aspect of the LogService is restricted to its implementation and deployment. A CF
provider may deliver an SCA conformant product without a LogService implementation. A
JTRS installation (e.g., a handheld platform with limited resources) may choose not to deploy a
LogService as part of its domain. Several CF components contain requirements to write log
records using the LogService. CF components that are required to write log records are also
required to account for the absence of a log service and otherwise operate normally.

3.1.2.3.2.1 Types.
3.1.2.3.2.1.1 LogLevelType.
Type LogLevelType is an enumeration that is utilized to identify log levels.

enum LogLevelType {SECURITY_ALARM

, FAILURE_ALARM
, DEGRADED_ALARM
, EXCEPTION_ERROR
, FLOW_CONTROL_ERROR
, RANGE_ERROR
, USAGE_ERROR
, ADMINISTRATIVE_EVENT
, STATISTIC_REPORT
, PROGRAMMER_DEBUG1
, PROGRAMMER_DEBUG2
, PROGRAMMER_DEBUG3
, PROGRAMMER_DEBUG4
, PROGRAMMER_DEBUG5
, PROGRAMMER_DEBUG6
, PROGRAMMER_DEBUG7
, PROGRAMMER_DEBUG8
, PROGRAMMER_DEBUG9
, PROGRAMMER_DEBUG10
, PROGRAMMER_DEBUG11
, PROGRAMMER_DEBUG12
, PROGRAMMER_DEBUG13
, PROGRAMMER_DEBUG14
, PROGRAMMER_DEBUG15
, PROGRAMMER_DEBUG16
};

3.1.2.3.2.1.2 ProducerLogRecordType.
Log producers format log records as defined in the structure ProducerLogRecordType.

MSRC-5000SCA
rev. 2.2

3-4

struct ProducerLogRecordType {
string producerId;
string producerName;
LogLevelType level;
string logData;

};

producerId: This field uniquely identifies the source of a log record. The value is the
component’s identifier and is unique for each SCA Resource and Core Framework component
within the Domain.

producerName: This field identifies the producer of a log record in textual format. This field is
assigned by the log producer, thus is not unique within the Domain (e.g. multiple instances of an
application will assign the same name to the ProducerName field.)

level: The level field can be used to classify the log record according to the LogLevelType.

logData : This field contains the informational message being logged.

3.1.2.3.2.1.3 LogLevelSequence.
The LogLevelSequence type is an unbounded sequence of LogLevelTypes. The
PRODUCER_LOG_LEVEL configure/query property is of the LogLevelSequence type.
typedef sequence <LogLevelType> LogLevelSequence;

3.1.2.3.3 Log.
3.1.2.3.3.1 Description.
A Log is utilized by CF and CORBA capable application components to store informational
messages. These informational messages are referred to as ‘log records’ in this document. The
interface provides operations for writing log records to a Log, retrieving LogRecords from a Log,
controlling of a Log, and getting the status of a Log.

MSRC-5000SCA
rev. 2.2

3-5

3.1.2.3.3.2 UML.

uses

Log

getMaxSize() : unsigned long long
setMaxSize(size : in unsigned long long) : void
getCurrentSize() : unsigned long long
getNumRecords() : unsigned long long
getLogFullAction() : LogFullActionType
setLogFullAction(action : in LogFullActionType) : void
getAvailabilityStatus() : AvailabilityStatusType
getAdministrativeState() : AdministrativeStateType
setAdministrativeState(state : in AdministrativeStateType) : void
getOperationalState() : OperationalStateType
writeRecords(records : in ProducerLogRecordSequence) : void
getRecordIdFromTime(fromTime : in LogTimeType) : RecordIdType
retrieveById(currentId : inout RecordIdType, howMany : in unsigned long) : LogRecordSequence
clearLog() : void
destroy() : void

<<Interface>>

ProducerLogRecordType
producerId : string
producerName : string
level : LogLevelType
logData : string

<<CORBAStruct>>

Figure 3-2. Log UML.

3.1.2.3.3.3 Types.
3.1.2.3.3.3.1 InvalidParam Exception.
The InvalidParam exception indicates that a provided parameter was invalid.
exception InvalidParam {string details};

3.1.2.3.3.3.2 This paragraph intentionally left blank.

3.1.2.3.3.3.3 LogTimeType.
This type provides the time format used by the Log to time stamp LogRecords. Each field is
intended to directly map to the POSIX timespec structure as follows:

struct LogTimeType {
long seconds; // maps to POSIX time_t type

MSRC-5000SCA
rev. 2.2

3-6

long nanoseconds;
};

3.1.2.3.3.3.4 OperationalStateType.
The enumeration OperationalStateType defines the Log states of operation. When the Log is
ENABLED it is fully functional and is available for use by log producer and log consumer
clients. A Log that is DISABLED has encountered a runtime problem and is not available for
use by log producers or log consumers. The internal error conditions that cause the Log to set
the operational state to ENABLED or DISABLED are implementation specific.
enum OperationalStateType {DISABLED, ENABLED};

3.1.2.3.3.3.5 AdministrativeStateType.
The AdministrativeStateType denotes the active logging state of an operational Log. When set
to UNLOCKED the Log will accept records for storage, per its operational parameters. When
set to LOCKED the Log will not accept new log records and records can be read or deleted only.
enum AdministrativeStateType {LOCKED, UNLOCKED};

3.1.2.3.3.3.6 AvailabilityStatusType.
AvailabilityStatusType denotes whether or not the Log is available for use. When true, offDuty
indicates the Log is LOCKED (administrative state) or DISABLED (operational state). When
true, logFull indicates the Log storage is full.
struct AvailabilityStatusType{

boolean offDuty;
boolean logFull;

};

3.1.2.3.3.3.7 LogFullActionType.
This type specifies the action that the Log should take when its internal buffers become full of
data, leaving no room for new records to be written. Wrap indicates that the Log will overwrite
the oldest LogRecords with the newest records, as they are written to the Log. Halt indicates that
the Log will stop logging when full.
enum LogFullActionType (WRAP, HALT);

3.1.2.3.3.3.8 RecordIDType.
This type provides the record ID that is assigned to a LogRecord.
typedef unsigned long long RecordIDType;

3.1.2.3.3.3.9 LogRecordType.
The LogRecordType defines the format of the LogRecords as stored in the Log. The ‘info’ field
is the ProducerLogRecord that is written by a client to the Log.
struct LogRecordType {

RecordIDType id;
LogTimeType time;

MSRC-5000SCA
rev. 2.2

3-7

ProducerLogRecordType info;
};

3.1.2.3.3.3.10 LogRecordSequence.
The LogRecordSequence type defines an unbounded sequence of LogRecords.
typedef sequence<LogRecordType> LogRecordSequence;

3.1.2.3.3.3.11 ProducerLogRecordSequence Type.
The ProducerLogRecordSequence type defines a sequence of ProducerLogRecordTypes.
typedef sequence <ProducerLogRecordType> ProducerLogRecordSequence

3.1.2.3.3.4 Attributes.
N/A.

3.1.2.3.3.5 Operations.
3.1.2.3.3.5.1 getMaxSize.
3.1.2.3.3.5.1.1 Brief Rationale.
This operation sets the maximum number of bytes that the Log can store.

3.1.2.3.3.5.1.2 Synopsis.
unsigned long long getMaxSize();

3.1.2.3.3.5.1.3 Behavior.
The getMaxSize operation returns the maximum size of the Log measured in number of bytes.

3.1.2.3.3.5.1.4 Returns.
The getMaxSize operation shall return the integer number of bytes that the Log is capable of
storing.

3.1.2.3.3.5.1.5 Exceptions/Errors.
This operation does not raise any exceptions.

3.1.2.3.3.5.2 setMaxSize.
3.1.2.3.3.5.2.1 Brief Rationale.
This operation sets the maximum number of bytes that the Log can store.

3.1.2.3.3.5.2.2 Synopsis.
void setMaxSize(in unsigned long long size) raises (InvalidParam);

3.1.2.3.3.5.2.3 Behavior.
The setMaxSize operation shall set the maximum size of the log measured in number of bytes.

3.1.2.3.3.5.2.4 Returns.
This operation does not return a value.

MSRC-5000SCA
rev. 2.2

3-8

3.1.2.3.3.5.2.5 Exceptions/Errors.
The setMaxSize operation shall raise the InvalidParam exception if the size parameter passed in
is less than the current size of the Log.

The setMaxSize operation shall raise the InvalidParam exception if the input size parameter is
greater than the storage space available to the Log.

3.1.2.3.3.5.3 getCurrentSize.
3.1.2.3.3.5.3.1 Brief Rationale.
The getCurrentSize operation provides the current size of the log storage in bytes.

3.1.2.3.3.5.3.2 Synopsis.
unsigned long long getCurrentSize ();

3.1.2.3.3.5.3.3 Behavior.
The getCurrentSize operation returns the current size of the log storage in bytes.

3.1.2.3.3.5.3.4 Returns.
The getCurrentSize operation shall return the current size of the log storage in bytes. (i.e. if the
log contains no records, getCurrentSize will return a value of 0 (zero).)

3.1.2.3.3.5.3.5 Exceptions/Errors.
This operation does not return any exceptions.

3.1.2.3.3.5.4 getNumRecords.
3.1.2.3.3.5.4.1 Brief Rationale.
The getNumRecords operation provides the number of records present in the Log.

3.1.2.3.3.5.4.2 Synopsis.
unsigned long long getNumRecords ();

3.1.2.3.3.5.4.3 Behavior.
The getNumRecords operation returns the current number of records contained in the Log.

3.1.2.3.3.5.4.4 Returns.
The getNumRecords operation shall return the current number of LogRecords contained in the
Log.

3.1.2.3.3.5.4.5 Exceptions/Errors.
This operation does not raise any exceptions.

3.1.2.3.3.5.5 getLogFullAction.
3.1.2.3.3.5.5.1 Brief Rationale.
The getLogFullAction operation provides the action taken when the Log becomes full.

3.1.2.3.3.5.5.2 Synopsis.
LogFullActionType getLogFullAction();

MSRC-5000SCA
rev. 2.2

3-9

3.1.2.3.3.5.5.3 Behavior.
The getLogFullAction operation returns the action that will be taken when the maximum size of
the Log has been reached.

3.1.2.3.3.5.5.4 Returns.
The getLogFullAction operation shall return the Log’s log full action setting.

3.1.2.3.3.5.5.5 Exceptions/Errors.
This operation does not return any exceptions.

3.1.2.3.3.5.6 setLogFullAction.
3.1.2.3.3.5.6.1 Brief Rationale.
The setLogFullAction operation provides the mechanism to configure the action taken by a Log
when it becomes full.

3.1.2.3.3.5.6.2 Synopsis.
void setLogFullAction(in LogFullActionType action)

3.1.2.3.3.5.6.3 Behavior.
The setLogFullAction operation shall set the action taken by a Log, when its maximum size has
been reached, to the value specified in the action parameter. The valid values for the action
parameter, WRAP and HALT, are described by LogFullActionType in 3.1.2.3.3.3.7.

3.1.2.3.3.5.6.4 Returns.
This operation does not return a value.

3.1.2.3.3.5.6.5 Exceptions/Errors.
This operation does not return any exceptions.

3.1.2.3.3.5.7 getAvailabilityStatus.
3.1.2.3.3.5.7.1 Brief Rationale.
The getAvailabilityStatus operation is used to read the availability status of the Log.

3.1.2.3.3.5.7.2 Synopsis.
AvailabilityStatusType getAvailabilityStatus ();

3.1.2.3.3.5.7.3 Behavior.
The getAvailabilityStatus operation returns a structure that reflects the availability status of the
Log. See the description of the AvailabilityStatusType in 3.1.2.3.3.3.6.

3.1.2.3.3.5.7.4 Returns.
The getAvailabilityStatus operation shall return the current availability status of the Log.

3.1.2.3.3.5.7.5 Exceptions/Errors.
This operation does not raise any exceptions.

3.1.2.3.3.5.8 getAdministrativeState.
3.1.2.3.3.5.8.1 Brief Rationale.
The getAdministrativeState is used to read the administrative state of the Log.

MSRC-5000SCA
rev. 2.2

3-10

3.1.2.3.3.5.8.2 Synopsis.
AdministrativeStateType getAdministrativeState();

3.1.2.3.3.5.8.3 Behavior.
The getAdministrativeState operation returns the administrative state of the Log. See the
description of the AdministrativeStateType in 3.1.2.3.3.3.5.

3.1.2.3.3.5.8.4 Returns.
The getAdministrativeState operation shall return the current administrative state of the Log.

3.1.2.3.3.5.8.5 Exceptions/Errors.
This operation does not raise any exceptions.

3.1.2.3.3.5.9 setAdministrativeState.
3.1.2.3.3.5.9.1 Brief Rationale.
The setAdministrativeState operation provides write access to the administrative state value.

3.1.2.3.3.5.9.2 Synopsis.
void setAdministrativeState(in AdministrativeStateType state);

3.1.2.3.3.5.9.3 Behavior.
The setAdministrativeState operation shall set the administrative state of the Log.

3.1.2.3.3.5.9.4 Returns.
This operation does not return a value.

3.1.2.3.3.5.9.5 Exceptions/Errors.
This operation does not raise any exceptions.

3.1.2.3.3.5.10 getOperationalState.
3.1.2.3.3.5.10.1 Brief Rationale.
The getOperationalState operation returns the operational state of the Log.

3.1.2.3.3.5.10.2 Synopsis.
OperationalStateType getOperationalState();

3.1.2.3.3.5.10.3 Behavior.
The getOperationalState operation returns the operational state of the Log. See the description
of OperationalStateType in 3.1.2.3.3.3.4.

3.1.2.3.3.5.10.4 Returns.
The getOperationalState operation shall return the current operational state of the Log.

3.1.2.3.3.5.10.5 Exceptions/Errors.
This operation does not raise any exceptions.

MSRC-5000SCA
rev. 2.2

3-11

3.1.2.3.3.5.11 writeRecords.
3.1.2.3.3.5.11.1 Brief Rationale.
The writeRecords operation provides the method for writing log records to the Log. The
operation is defined as one-way to minimize client overhead while writing to the Log.

3.1.2.3.3.5.11.2 Synopsis.
oneway void writeRecords(in ProducerLogRecordSequence records);

3.1.2.3.3.5.11.3 Behavior.
The writeRecords operation shall add each log record supplied in the records parameter to the
Log. When there is insufficient storage to add one of the supplied log records to the Log, and the
LogFullAction is set to HALT, the writeRecords method shall set the availability status logFull
state to true (e.g., If 3 records are provided in the records parameter, and while trying to write the
second record to the log, the record will not fit, then the log is considered to be full. Therefore,
the second and third records will not be stored in the log but the first record would have been
successfully stored.).

The writeRecords operation shall write the current local time to the time field of each record
written to the Log. The writeRecords operation shall assign a unique record Id to the id field of
the LogRecord.

Log records accepted for storage by the writeRecords shall be available for retrieval in the order
received.

3.1.2.3.3.5.11.4 Returns.
This operation does not return a value.

3.1.2.3.3.5.11.5 Exceptions/Errors.
This operation does not raise any exceptions.

3.1.2.3.3.5.12 getRecordIdFromTime.
3.1.2.3.3.5.12.1 Brief Rationale.
The getRecordIdFromTime operation is used to get the record Id of the first record in the Log
with a time-stamp that is greater than or equal to the time specified in the parameter.

3.1.2.3.3.5.12.2 Synopsis.
RecordIDType getRecordIdFromTime (in LogTimeType fromTime);

3.1.2.3.3.5.12.3 Behavior.
The getRecordIdFromTime operation returns the record Id of the first record in the Log with a
time stamp that is greater than, or equal to, the time specified in the fromTime parameter. If the
Log does not contain a record that meets the criteria provided, then the RecordIdType returned
shall correspond to the next record that will be recorded in the future. In this way, if this
“future” recordId is passed into the retrieveById operation and empty record will be returned,
unless since that time records have been recorded. Note that if the time specified in the
fromTime parameter is in the future, there is no guarantee that the resulting records returned will
have a time stamp after the fromTime parameter if the returned recordId is subsequently used as
input to the retrieveById operation.

MSRC-5000SCA
rev. 2.2

3-12

3.1.2.3.3.5.12.4 Returns.
The getRecordIdFromTime operation returns the record Id of the first record in the log with a
time-stamp that is greater than, or equal to, the time specified in the fromTime parameter. If the
Log does not contain a record that meets the criteria provided, then the RecordIdType returned
shall correspond to the next record that will be recorded in the future. In this way, if this
“future” recordId is passed into the retrieveById operation and empty record will be returned,
unless since that time records have been recorded..

3.1.2.3.3.5.12.5 Exceptions/Errors.
This operation does not raise any exceptions.

3.1.2.3.3.5.13 retrieveById.
3.1.2.3.3.5.13.1 Brief Rationale.
The retrieveById operation is used to get a specified number of records from a Log.

3.1.2.3.3.5.13.2 Synopsis.
LogRecordSequence retrieveById (inout RecordIDType currentId, in unsigned
long howMany);

3.1.2.3.3.5.13.3 Behavior.
The retrieveById operation returns a list of LogRecords that begins with the record specified by
the currentId parameter and contains less than or equal to the number of records specified in the
howMany parameter.

The retrieveById operation shall set the inout parameter currentId to the LogRecord Id of the
record following the last record in the LogRecordSequence returned. If the record sequence
returned exhausts the log records, then the currentId parameter shall be set to the LogRecordId of
where the log will resume writing logs on the next write.

3.1.2.3.3.5.13.4 Returns.
The retrieveById operation shall return a LogRecordSequence that begins with the record
specified by the currentId parameter. The number of records in the LogRecordSequence
returned by the retrieveById operation shall be equal to the number of records specified by the
howMany parameter, or the number of records available if the number of records specified by
the howMany parameter cannot be met. If the record specified by currentId does not exist, the
retrieveById operation shall return an empty list of LogRecords and leave the currentId
unchanged. If the Log is empty, or has been exhausted, the retrieveById operation shall return
an empty list of LogRecords and leave the currentId unchanged.

3.1.2.3.3.5.13.5 Exceptions/Errors.
This operation does not raise any exceptions.

3.1.2.3.3.5.14 clearLog.
3.1.2.3.3.5.14.1 Brief Rationale.
The clearLog operation provides the method for removing all of the LogRecords from the Log.

3.1.2.3.3.5.14.2 Synopsis.
void clearLog ();

MSRC-5000SCA
rev. 2.2

3-13

3.1.2.3.3.5.14.3 Behavior.
The clearLog operation shall delete all records from the Log. The clearLog operation shall set
the current size of the Log storage to zero. The clearLog operation shall set the current number
of records in the Log to zero. The clearLog operation shall set the logFull availability status
element to false.

3.1.2.3.3.5.14.4 Returns.
This operation does not return a value.

3.1.2.3.3.5.14.5 Exceptions/Errors.
This operation does not raise any exceptions.

3.1.2.3.3.5.15 destroy.
3.1.2.3.3.5.15.1 Brief Rationale.
The destroy operation provides a means by which an instantiated Log may be torn down.

3.1.2.3.3.5.15.2 Synopsis.
void destroy ();

3.1.2.3.3.5.15.3 Behavior.
The destroy operation shall release all internal memory and/or storage allocated by the Log. The
destroy operation shall tear down the component (i.e., released from the CORBA environment).

3.1.2.3.3.5.15.4 Returns.
This operation does not return a value.

3.1.2.3.3.5.15.5 Exceptions/Errors.
This operation does not raise any exception.

3.1.2.4 CORBA Event Service and Standard Events.
3.1.2.4.1 CORBA Event Service.
A CORBA Event Service (e.g., OMG’s Event Service) shall be provided in the OE. The
CORBA Event Service decouples the communication between consumer and producer objects,
where consumer components are unaware of producer components, and vice versa. Consumer
components process event data that are produced by producer components. The CORBA Event
Service is based upon the Push Model approach where producers push events to consumer. The
CORBA Event Service shall support Push interfaces (PushConsumer and PushSupplier) of the
CosEventComm CORBA module as described in OMG Document formal/01-03-01: Event
Service, v1.1. The compilable IDL for the CosEventComm is in the OMG Document formal/01-
03-02: Event Service IDL, v1.1.

The CosEventComm CORBA Module is used by consumers for receiving events and by
producers for generating events. A component (e.g., Resource, DomainManager, etc.) that
consumes events shall implement the CosEventComm PushConsumer interface. A component
(e.g., Resource, Device, DomainManager, etc.) that produces events shall implement the
CosEventComm PushSupplier interface and use the CosEventComm PushConsumer interface
for generating the events. A producer component shall handle all cases, without raising any
exceptions outside of the producer component, due to the connections to a CosEventComm
PushConsumer being nil or an invalid reference. The CORBA Event Service will have the

MSRC-5000SCA
rev. 2.2

3-14

capability to create event channels. An event channel allows multiple suppliers to communicate
with multiple consumers asynchronously. An event channel is both a consumer and a producer of
events. For Example, event channels can be standard CORBA objects and communication with
an event channel is accomplished using standard CORBA requests.

The OE provides two standard event channels: Incoming Domain Management and Outgoing
Domain Management. The Incoming Domain Management Channel name shall be
"IDM_Channel". The Outgoing Domain Management Channel name shall be "ODM_Channel".
The Incoming Domain Management event channel is used by components (e.g., Device state
change event) within the domain to generate events that are consumed by domain management
functions (e.g., ApplicationFactory, Application, DomainManager, etc.). The Outgoing Domain
Management Channel is used by domain clients (e.g., HCI) to receive events (e.g., additions or
removals from the domain) generated from domain management functions (e.g.,
ApplicationFactory, Application, DomainManager, etc.). Besides these two standard event
channels, the OE allows other event channels to be set up by application developers.

3.1.2.4.2 StandardEvent Module.
The StandardEvent module contains type definitions that will be used for passing events from
event producers to event consumers.

3.1.2.4.2.1 Types.
3.1.2.4.2.1.1 StateChangeCategoryType.
Type StateChangeCategoryType is an enumeration that is utilized in the StateChangeEventType.
It is used to identify the category of state change that has occurred.
enum StateChangeCategoryType
{

ADMINISTRATIVE_STATE_EVENT,
OPERATIONAL_STATE_EVENT,
USAGE_STATE_EVENT

};

3.1.2.4.2.1.2 StateChangeType.
Type StateChangeType is an enumeration that is utilized in the StateChangeEventType. It is used
to identify the specific states of the event source before and after the state change occurred.
enum StateChangeType
{

LOCKED, /*Administrative State Event */
UNLOCKED, /*Administrative State Event */
SHUTTING_DOWN, /*Administrative State Event */
ENABLED, /*Operational State Event */
DISABLED, /*Operational State Event */
IDLE, /*Usage State Event */
ACTIVE, /*Usage State Event */
BUSY /*Usage State Event */

};

MSRC-5000SCA
rev. 2.2

3-15

3.1.2.4.2.1.3 StateChangeEventType.
Type StateChangeEventType is a structure used to indicate that the state of the event source has
changed. The event producer will send this structure into an event channel on behalf of the event
source.
struct StateChangeEventType
{

string producerId;
string sourceId;
StateChangeCategoryType stateChangeCategory;
StateChangeType stateChangeFrom;
StateChangeType stateChangeTo;

};

3.1.2.4.2.1.4 SourceCategoryType.
Type SourceCategoryType is an enumeration that is utilized in the
DomainManagementObjectAddedEventType and
DomainManagementObjectRemovedEventType. It is used to identify the type of object that has
been added to or removed from the domain.
enum SourceCategoryType
{

DEVICE_MANAGER,
DEVICE,
APPLICATION_FACTORY,
APPLICATION,
SERVICE

};

3.1.2.4.2.1.5 DomainManagementObjectRemovedEventType.
Type DomainManagementObjectRemovedEventType is a structure used to indicate that the
event source has been removed from the domain. The event producer will send this structure into
an event channel on behalf of the event source.
struct DomainManagementObjectRemovedEventType
{

string producerId;
string sourceId;
string sourceName;
SourceCategoryType sourceCategory;

};

3.1.2.4.2.1.6 DomainManagementObjectAddedEventType.
Type DomainManagementObjectAddedEventType is a structure used to indicate that the event
source has been added to the domain. The event producer will send this structure into an event
channel on behalf of the event source.
struct DomainManagementObjectAddedEventType
{

string producerId;
string sourceId;
string sourceName;
Object sourceIOR;

MSRC-5000SCA
rev. 2.2

3-16

SourceCategoryType sourceCategory;
};

3.1.3 Core Framework.

The CF specification includes a detailed description of the purpose of each interface, the purpose
of each supported operation within the interface, and interface class diagrams to support these
descriptions. The corresponding IDL for the CF can be found in Appendix C.

Figure 3-3 depicts the key elements of the CF and the IDL relationships between these elements.
A DomainManager component manages the software Applications, ApplicationFactories,
hardware devices (represented by software Devices) and DeviceManagers within the system. An
Application is a type of Resource and consists of one to many software Resources. Some of the
software Resources may directly control the system’s internal hardware devices; these Resources
are logical Device, which implement the Device, LoadableDevice, or ExecutableDevice
interfaces. (For example, a ModemDevice may provide direct control of a modem hardware
device such as a Field Programmable Gate Array (FPGA) or an Application Specific Integrated
Circuit (ASIC). An I/ODevice may operate as a device driver to provide external access to the
system.) Other software Resources have no direct relationship with a hardware device, but
perform application services for the user. (For example, a NetworkResource may perform a
network layer function. A WaveformLinkResource may perform a waveform specific link layer
service.) Each Resource can potentially communicate with other Resources. Devices are
allocated to one or more hardware devices by the DomainManager based upon various factors
including the hardware devices that the DeviceManager knows about, the current availability of
hardware devices, the behavior rules of a Resource, and the loading requirements of the
Resource.

MSRC-5000SCA
rev. 2.2

3-17

<<Interface>>
Device <<Interface>>

Application

<<Interface>>
DomainManager

inherits
from

uses

<<Interface>>
ApplicationFactory

<<Interface>>
DeviceManager

<<Interface>>
FileManager

deviceManagers

1..*

0..*
applicationFactories

file
Mgr1

applications

0..*

uses

<<Interface>>
File

fileSys

0..1

<<Interface>>
Resource

<<Interface>>
ResourceFactory

Core Framework Interface

Implemented by
Non-Core Applications

Core Framework Interface

Implemented as
Core Application Services

Legend

<<Interface>>
FileSystem

<<Interface>>
LoadableDevice

<<Interface>>
ExecuteableDevice

<<Interface>>
AggregateDevice 0..*

devices

<<Interface>>
PropertySet

<<Interface>>
PropertySet<<Interface>>

LifeCycle
<<Interface>>

TestableObject
<<Interface>>

PortSupplier
<<Interface>>

Port

Figure 3-3. Core Framework IDL Relationships

The Resources being managed by the DomainManager are CORBA objects implementing the
Resource interface. Some Resources may be dependent on other Resources. This interface
provides a consistent way of creating up and tearing down any Resource within the system.
These resources can be created by using a ResourceFactory interface or by the Device interfaces
(Device, LoadableDevice, or ExecutableDevice).

The file service interfaces (FileManager, FileSystem, and File) are used for installation and
removal of application files within the system, and for loading and unloading application files on
the various processors that the Devices execute upon.

3.1.3.1 Base Application Interfaces.
Base Application Interfaces are defined by the Core Framework requirements and implemented
by application developers; see 3.2 for Application requirements.

MSRC-5000SCA
rev. 2.2

3-18

3.1.3.1.1 Port.
3.1.3.1.1.1 Description.
This interface provides operations for managing associations between ports. The Port interface
UML is depicted in Figure 3-4. An application defines a specific Port type by specifying an
interface that inherits the Port interface. An application establishes the operations for
transferring data and control. The application also establishes the meaning of the data and
control values. Examples of how applications may use ports in different ways include: push or
pull, synchronous or asynchronous, mono- or bi-directional, or whether to use flow control (e.g.,
pause, start, stop).

The nature of Port fan-in, fan-out, or one-to-one is component dependent.

Note 1: The CORBA specification defines only a minimum size for each basic IDL type. The
actual size of the data type is dependent on the language (defined in the language mappings) as
well as the Central Processing Unit (CPU) architecture used. By using these CORBA basic data
types, portability is maintained between components implemented in differing CPU architectures
and languages.

Note 2: How components' ports are connected is described in the software assembly descriptor
(SAD) file of the Domain Profile (3.1.3.4).

3.1.3.1.1.2 UML.

Port

connectPort(connection : in Object, connectionId : in string) : void
disconnectPort(connectionId : in string) : void

<<Interface>>

Figure 3-4. Port Interface UML

3.1.3.1.1.3 Types.
3.1.3.1.1.3.1 InvalidPort.
The InvalidPort exception indicates one of the following errors has occurred in the specification
of a Port association:

1. errorCode 1 means the Port component is invalid (unable to narrow object reference)
or illegal object reference,

2. errorCode 2 means the Port name is not found (not used by this Port).

exception InvalidPort { unsigned short errorCode, string msg };

3.1.3.1.1.3.2 OccupiedPort.
The OccupiedPort exception indicates the Port is unable to accept any additional connections.
exception OccupiedPort {};

MSRC-5000SCA
rev. 2.2

3-19

3.1.3.1.1.4 Attributes.
N/A.

3.1.3.1.1.5 Operations.
3.1.3.1.1.5.1 connectPort.
3.1.3.1.1.5.1.1 Brief Rationale.
Applications require the connectPort operation to establish associations between Ports. Ports
provide channels through which data and/or control pass.

The connectPort operation provides half of a two-way association; therefore two calls are
required to create a two-way association.

3.1.3.1.1.5.1.2 Synopsis.
void connectPort(in Object connection, in string connectionId) raises
(InvalidPort, OccupiedPort);

3.1.3.1.1.5.1.3 Behavior.
The connectPort operation shall make a connection to the component identified by the input
parameters.

A port may support several connections. The input connectionId is a unique identifier to be used
by disconnectPort when breaking this specific connection.

3.1.3.1.1.5.1.4 Returns.
This operation does not return a value.

3.1.3.1.1.5.1.5 Exceptions/Errors.
The connectPort operation shall raise the InvalidPort exception when the input connection
parameter is an invalid connection for this Port.

The connectPort operation shall raise the OccupiedPort exception when unable to accept the
connections because the Port is already fully occupied.

3.1.3.1.1.5.2 disconnectPort.
3.1.3.1.1.5.2.1 Brief Rationale.
Applications require the disconnectPort operation in order to allow consumer/producer data
components to disassociate themselves from their counterparts (consumer/producer).

3.1.3.1.1.5.2.2 Synopsis.
void disconnectPort (in string connectionId) raises (InvalidPort);

3.1.3.1.1.5.2.3 Behavior.
The disconnectPort operation shall break the connection to the component identified by the input
parameter.

3.1.3.1.1.5.2.4 Returns.
This operation does not return a value.

MSRC-5000SCA
rev. 2.2

3-20

3.1.3.1.1.5.2.5 Exceptions/Errors.
The disconnectPort operation shall raise the InvalidPort exception when the name passed to
disconnectPort is not connected with the Port component.

3.1.3.1.2 LifeCycle.
3.1.3.1.2.1 Description.
The LifeCycle interface defines the generic operations for initializing or releasing instantiated
component-specific data and/or processing elements. The LifeCycle interface UML is depicted
in Figure 3-5.

3.1.3.1.2.2 UML.

LifeCycle

initialize() : void
releaseObject() : void

<<Interface>>

StringSequence
<<CORBATypedef>>

Figure 3-5. LifeCycle Interface UML

3.1.3.1.2.3 Types.
3.1.3.1.2.3.1 InitializeError.
The InitializeError exception indicates an error occurred during component initialization. The
message is component-dependent, providing additional information describing the reason why
the error occurred.
exception InitializeError { StringSequence errorMessage; };

3.1.3.1.2.3.2 ReleaseError.
The ReleaseError exception indicates an error occurred during component releaseObject. The
message is component-dependent, providing additional information describing the reason why
the error occurred.
exception ReleaseError { StringSequence errorMessage; };

3.1.3.1.2.4 Attributes.
N/A.

MSRC-5000SCA
rev. 2.2

3-21

3.1.3.1.2.5 Operations.
3.1.3.1.2.5.1 initialize.
3.1.3.1.2.5.1.1 Brief Rationale.
The purpose of the initialize operation is to provide a mechanism to set a component to a known
initial state. (For example, data structures may be set to initial values, memory may be allocated,
hardware devices may be configured to some state, etc.)

3.1.3.1.2.5.1.2 Synopsis.
void initialize() raises (InitializeError);

3.1.3.1.2.5.1.3 Behavior.
Initialization behavior is implementation dependent.

3.1.3.1.2.5.1.4 Returns.
This operation does not return a value.

3.1.3.1.2.5.1.5 Exceptions/Errors.
The initialize operation shall raise an InitializeError exception when an initialization error
occurs.

3.1.3.1.2.5.2 releaseObject.
3.1.3.1.2.5.2.1 Brief Rationale.
The purpose of the releaseObject operation is to provide a means by which an instantiated
component may be torn down.

3.1.3.1.2.5.2.2 Synopsis.
void releaseObject() raises (ReleaseError);

3.1.3.1.2.5.2.3 Behavior.
The releaseObject operation shall release all internal memory allocated by the component during
the life of the component. The releaseObject operation shall tear down the component (i.e.
released from the CORBA environment). The releaseObject operation shall release components
from the OE.

3.1.3.1.2.5.2.4 Returns.
This operation does not return a value.

3.1.3.1.2.5.2.5 Exceptions/Errors.
The releaseObject operation shall raise a ReleaseError exception when a release error occurs.

3.1.3.1.3 TestableObject.
3.1.3.1.3.1 Description.
The TestableObject interface defines a set of operations that can be used to test component
implementations. The TestableObject interface UML is depicted in Figure 3-6.

MSRC-5000SCA
rev. 2.2

3-22

3.1.3.1.3.2 UML.

UnknownProperties
invalidProperties : Properties

<<CORBAException>>

TestableObject

runTest(testid : in unsigned long, testValues : inout Properties) : void

<<Interface>>

Figure 3-6. TestableObject Interface UML

3.1.3.1.3.3 Types.
3.1.3.1.3.3.1 UnknownTest.
The UnknownTest exception indicates the requested testId for a test to be performed is not
known by the component.
exception UnknownTest {};

3.1.3.1.3.4 Attributes.
N/A.

3.1.3.1.3.5 Operations.
3.1.3.1.3.5.1 runTest.
3.1.3.1.3.5.1.1 Brief Rationale.
The runTest operation allows components to be “blackbox” tested. This allows Built-In Test
(BIT) to be implemented and this provides a means to isolate faults (both software and hardware)
within the system.

3.1.3.1.3.5.1.2 Synopsis.
void runTest(in unsigned long testId, inout Properties testValues)raises
(UnknownTest, UnknownProperties);

3.1.3.1.3.5.1.3 Behavior.
The runTest operation shall use the testId parameter to determine which of its predefined test
implementations should be performed. The testValues parameter CF Properties (id/value pair(s))
shall be used to provide additional information to the implementation-specific test to be run. The
runTest operation shall return the result(s) of the test in the testValues parameter.

MSRC-5000SCA
rev. 2.2

3-23

Tests to be implemented by a component are component-dependent and are specified in the
component’s Properties Descriptor. Valid testId(s) and both input and output testValues
(properties) for the runTest operation shall at a minimum be test properties defined in the
properties test element of the component's Properties Descriptor (refer to Appendix D Domain
Profile). The testid parameter corresponds to the XML attribute testId of the property element
test in a propertyfile.

A CF UnknownProperties exception is raised by the runTest operation. All inputValues
properties shall be validated (i.e., test properties defined in the propertyfile(s) referenced in the
component’s SPD).

The runTest operation shall not execute any testing when the input testId or any of the input
testValues are not known by the component or are out of range.

3.1.3.1.3.5.1.4 Returns.
This operation does not return a value.

3.1.3.1.3.5.1.5 Exceptions/Errors.
The runTest operation shall raise the UnknownTest exception when there is no underlying test
implementation that is associated with the input testId given.

The runTest operation shall raise the UnknownProperties exception when the input parameter
testValues contains any DataTypes that are not known by the component’s test implementation
or any values that are out of range for the requested test. The exception parameter
invalidProperties shall contain the invalid inputValues properties id(s) that are not known by the
component or the value(s) are out of range.

3.1.3.1.4 PortSupplier.
3.1.3.1.4.1 Description.
This interface provides the getPort operation for those components that provide ports.

3.1.3.1.4.2 UML.

PortSupplier

getPort(name : in string) : Object

<<Interface>>

Figure 3-7. PortSupplier Interface UML

3.1.3.1.4.3 Types.
3.1.3.1.4.3.1 UnknownPort.
The UnknownPort exception is raised if an undefined port is requested.
exception UnknownPort { };

3.1.3.1.4.4 Attributes.
N/A.

MSRC-5000SCA
rev. 2.2

3-24

3.1.3.1.4.5 Operations.
3.1.3.1.4.5.1 getPort.
3.1.3.1.4.5.1.1 Brief Rationale.
The getPort operation provides a mechanism to obtain a specific consumer or producer Port. A
PortSupplier may contain zero-to-many consumer and producer port components. The exact
number is specified in the component’s Software Profile SCD (section 3.1.3.4). Multiple input
and/or output ports provide flexibility for PortSuppliers that must manage varying priority levels
and categories of incoming and outgoing messages, provide multi-threaded message handling, or
other special message processing.

3.1.3.1.4.5.1.2 Synopsis.
Object getPort(in string name) raises (UnknownPort);

3.1.3.1.4.5.1.3 Behavior.
The getPort operation returns the object reference to the named port as stated in the component's
SCD.

3.1.3.1.4.5.1.4 Returns.
The getPort operation shall return the CORBA object reference that is associated with the input
port name.

3.1.3.1.4.5.1.5 Exceptions/Errors.
The getPort operation shall raise an UnknownPort exception if the port name is invalid.

3.1.3.1.5 PropertySet.
3.1.3.1.5.1 Description.
The PropertySet interface defines configure and query operations to access component
properties/attributes. The PropertySet interface UML is depicted in Figure 3-8.

MSRC-5000SCA
rev. 2.2

3-25

3.1.3.1.5.2 UML.

Properties
<<CORBATypedef>>

PropertySet

configure(configProperties : in Propert ies) : void
query(configProperties : inout Properties) : void

<<Interface>>

UnknownProperties
invalidProperties : Properties

<<CORBAException>>

Figure 3-8. PropertySet Interface UML

3.1.3.1.5.3 Types.
N/A.

3.1.3.1.5.3.1 InvalidConfiguration.
The InvalidConfiguration exception indicates the configuration of a component has failed (no
configuration at all was done). The message is component-dependent, providing additional
information describing the reason why the error occurred. The invalidProperties returned
indicate the properties that were invalid.
exception InvalidConfiguration { string msg; Properties invalidProperties};

3.1.3.1.5.3.2 PartialConfiguration.
The PartialConfiguration exception indicates the configuration of a Component was partially
successful. The invalidProperties returned indicate the properties that were invalid.
exception PartialConfiguration { Properties invalidProperties};

3.1.3.1.5.4 Attributes.
N/A.

3.1.3.1.5.5 Operations.
3.1.3.1.5.5.1 configure.
3.1.3.1.5.5.1.1 Brief Rationale.
The configure operation allows id/value pair configuration properties to be assigned to
components implementing this interface.

MSRC-5000SCA
rev. 2.2

3-26

3.1.3.1.5.5.1.2 Synopsis.
void configure(in Properties configProperties) raises (InvalidConfiguration,
PartialConfiguration);

3.1.3.1.5.5.1.3 Behavior.
The configure operation shall assign values to the properties as indicated in the configProperties
argument. Valid properties for the configure operation shall at a minimum be the configure
readwrite and writeonly properties referenced in the component’s SPD.

3.1.3.1.5.5.1.4 Returns.
This operation does not return a value.

3.1.3.1.5.5.1.5 Exceptions/Errors.
The configure operation shall raise a PartialConfiguration exception when some configuration
properties were successfully set and some configuration properties were not successfully set.

The configure operation shall raise an InvalidConfiguration exception when a configuration error
occurs that prevents any property configuration on the component.

3.1.3.1.5.5.2 query.
3.1.3.1.5.5.2.1 Brief Rationale.
The query operation allows a component to be queried to retrieve its properties.

3.1.3.1.5.5.2.2 Synopsis.
void query(inout Properties configProperties) raises (UnknownProperties);

3.1.3.1.5.5.2.3 Behavior.
If the configProperties are zero size then, the query operation shall return all component
properties. If the configProperties are not zero size, then the query operation shall return only
those id/value pairs specified in the configProperties. Valid properties for the query operation
shall at a minimum be the configure, readwrite, and readonly properties, and allocation
properties that have an action value of “external” as referenced in the component’s SPD.

3.1.3.1.5.5.2.4 Returns.
This operation does not return a value.

3.1.3.1.5.5.2.5 Exceptions/Errors.
The query operation shall raise the CF UnknownProperties exception when one or more
properties being requested are not known by the component.

3.1.3.1.6 Resource.
3.1.3.1.6.1 Description.
The Resource interface provides a common API for the control and configuration of a software
component. The Resource interface UML is depicted in Figure 3-9.

The Resource interface inherits from the LifeCycle, PropertySet, TestableObject, and
PortSupplier interfaces.

The inherited LifeCycle, PropertySet, TestableObject, and PortSupplier interface operations are
documented in their respective sections of this document.

MSRC-5000SCA
rev. 2.2

3-27

The Resource interface may also be inherited by other application interfaces as described in the
Software Profile's Software Component Descriptor (SCD) file (see 3.1.3.4).

3.1.3.1.6.2 UML.

Figure 3-9. Resource Interface UML

3.1.3.1.6.3 Types.
3.1.3.1.6.3.1 UnknownPort.
The UnknownPort exception is raised if an undefined port is requested.
exception UnknownPort{};

3.1.3.1.6.3.2 StartError.
The StartError exception indicates that an error occurred during an attempt to start the Resource.
The error number shall indicate an ErrorNumberType value (e.g., EDOM, EPERM, ERANGE).

Resource
identifier : string

start() : void
stop() : void

<<Interface>>

inherits
from

LifeCycle

initialize()
releaseObject()

<<Interface>>
PropertySet

configure()
query()

<<Interface>>

TestableObject

runTest()

<<Interface>>
PortSupplier

getPort()

<<Interface>>

ErrorNumberType
<<CORBAEnum>>

MSRC-5000SCA
rev. 2.2

3-28

The message is component-dependent, providing additional information describing the reason
for the error.
exception StartError { ErrorNumberType errorNumber; string msg };

3.1.3.1.6.3.3 StopError.
The StopError exception indicates that an error occurred during an attempt to stop the Resource.
The error number shall indicate an ErrorNumberType value (e.g., ECANCELED, EFAULT,
EINPROGRESS). The message is component-dependent, providing additional information
describing the reason for the error.
exception StopError { ErrorNumberType errorNumber; string msg };

3.1.3.1.6.4 Attributes.

3.1.3.1.6.4.1 identifier.
The readonly identifier attribute shall contain the unique identifier for a resource instance.
readonly attribute string identifier;

3.1.3.1.6.5 Operations.
3.1.3.1.6.5.1 stop.
3.1.3.1.6.5.1.1 Brief Rationale.
The stop operation is provided to command a Resource implementing this interface to stop
internal processing.

3.1.3.1.6.5.1.2 Synopsis.
void stop()raises (StopError);

3.1.3.1.6.5.1.3 Behavior.
The stop operation shall disable all current operations and put the Resource in a non-operating
condition. Subsequent configure, query, and start operations are not inhibited by the stop
operation.

3.1.3.1.6.5.1.4 Returns.
This operation does not return a value.

3.1.3.1.6.5.1.5 Exceptions/Errors.
The stop operation shall raise the StopError exception if an error occurs while stopping the
resource.

3.1.3.1.6.5.2 start.
3.1.3.1.6.5.2.1 Brief Rationale.
The start operation is provided to command a Resource implementing this interface to start
internal processing.

3.1.3.1.6.5.2.2 Synopsis.
void start()raises (StartError);

MSRC-5000SCA
rev. 2.2

3-29

3.1.3.1.6.5.2.3 Behavior.
The start operation puts the Resource in an operating condition.

3.1.3.1.6.5.2.4 Returns.
This operation does not return a value.

3.1.3.1.6.5.2.5 Exceptions/Errors.
The start operation shall raise the StartError exception if an error occurs while starting the
resource.

3.1.3.1.7 ResourceFactory.
3.1.3.1.7.1 Description.
A ResourceFactory is used to create and tear down a Resource. The ResourceFactory interface
is designed after the Factory Design Patterns. The ResourceFactory interface UML is depicted
in Figure 3-10. The factory mechanism provides client-server isolation among Resources (e.g.,
Network, Link, Modem, I/O, etc.) and provides an industry standard mechanism of obtaining a
Resource without knowing its identity. An application is not required to use ResourceFactories
to obtain, create, or tear down resources. A Software Profile will determine which application
ResourceFactories are to be used by the ApplicationFactory.

3.1.3.1.7.2 UML.

ResourceFactory
identifier : string

createResource(resourceId : in string, qualifiers : in Properties) : Resource
releaseResource(resourceId : in string) : void
shutdown() : void

<<Interface>>

Resource
<<Interface>>

Properties
<<CORBATypedef>>

ErrorNumberType
<<CORBAEnum>>

Figure 3-10. ResourceFactory Interface UML

3.1.3.1.7.3 Types.

3.1.3.1.7.3.1 InvalidResourceId.
The InvalidResourceId exception indicates the resourceId does not exist in the Factory.
exception InvalidResourceId {};

MSRC-5000SCA
rev. 2.2

3-30

3.1.3.1.7.3.2 ShutdownFailure.
The ShutdownFailure exception indicates that the shutdown method failed to release the
ResourceFactory from the CORBA environment due to the fact the Factory still contains
Resources. The message is component-dependent, providing additional information describing
why the shutdown failed.
exception ShutdownFailure{ string msg };

3.1.3.1.7.3.3 CreateResourceFailure.
The CreateResourceFailure exception indicates that the createResource operation failed to create
the Resource. The error number shall indicate an ErrorNumberType value (e.g., NOTSET,
EBADMSG, EINVAL, EMSGSIZE, ENOMEM). The message is component-dependent,
providing additional information describing the reason for the error.
exception CreateResourceFailure{ ErrorNumberType errorNumber; string msg; };

3.1.3.1.7.4 Attributes.
N/A.

3.1.3.1.7.5 Operations.
3.1.3.1.7.5.1 createResource.
3.1.3.1.7.5.1.1 Brief Rationale.
The createResource operation provides the capability to create Resources in the same process
space as the ResourceFactory or to return a Resource that has already been created. This
behavior is an alternative approach to the Device’s execute operation for creating a Resource.

3.1.3.1.7.5.1.2 Synopsis.
The resourceNumber is the identifier for Resource. The qualifiers are parameter values used by
the ResourceFactory in creation of the Resource. The ApplicationFactory can determine the
values to be supplied for the qualifiers from the description in the ResourceFactory’s Software
Profile. The qualifiers may be used to identify, for example, specific subtypes of Resources
created by a ResourceFactory.Resource createResource(in string resourceId, in
Properties qualifiers) raises (CreateResourceFailure);

3.1.3.1.7.5.1.3 Behavior.
 The resourceId is the identifier for Resource. The qualifiers are parameter values used by the
ResourceFactory in creation of the Resource. The ApplicationFactory can determine the values
to be supplied for the qualifiers from the description in the ResourceFactory’s Software Profile.
The qualifiers may be used to identify, for example, specific subtypes of Resources created by a
ResourceFactory.If no Resource exists for the given resourceId, the createResource operation
shall create a Resource. If the Resource already exists, the Resource's reference is returned. The
createResource operation shall assign the given resourceId to a new Resource and either set a
reference count to one, when the Resource is initially created, or increment the reference count
by one, when the Resource already exists. The reference count is used to indicate the number of
times that a specific Resource reference has been given to requesting clients. This ensures that
the ResourceFactory does not release a Resource that has a reference count greater than 0.
When multiple clients have obtained a reference to the same Resource, each client will request

MSRC-5000SCA
rev. 2.2

3-31

release of the Resource when through with the Resource. However, the Resource must not be
released until the release request comes from the last client in existence

3.1.3.1.7.5.1.4 Returns.
The createResource operation shall return a reference to the created Resource or the existing
Resource. The createResource operation shall return a nil CORBA component reference when
the operation is unable to create or find the Resource.

The createResource operation shall return a reference to the created Resource or the existing
Resource. The createResource operation shall return a nil CORBA component reference when
the operation is unable to create the Resource.
3.1.3.1.7.5.1.5 Exceptions/Errors.
The createResource operation shall raise the CreateResourceFailure exception when it cannot
create the Resource.

3.1.3.1.7.5.2 releaseResource.
3.1.3.1.7.5.2.1 Brief Rationale.
In CORBA there is client side and server side representation of a Resource. The
releaseResource operation provides the mechanism of releasing the Resource in the CORBA
environment on the server side when all clients are through with a specific Resource. The client
still has to release its client side reference of the Resource.

3.1.3.1.7.5.2.2 Synopsis.
void releaseResource(in string resourceId) raises {InvalidResourceId);

3.1.3.1.7.5.2.3 Behavior.
The releaseResource operation shall decrement the reference count for the specified resource, as
indicated by the resourceId. The releaseResource operation shall make the Resource no longer
available (i.e., it is released from the CORBA environment) when the Resource’s reference count
is zero.

3.1.3.1.7.5.2.4 Returns.
This operation does not return a value.

3.1.3.1.7.5.2.5 Exceptions/Errors.
The releaseResource operation shall raise the InvalidResourceId exception if an invalid
resourceId is received.

3.1.3.1.7.5.3 shutdown.
3.1.3.1.7.5.3.1 Brief Rationale.
In CORBA there is client side and server side representation of a ResourceFactory. The
shutdown operation provides the mechanism for releasing the ResourceFactory from the
CORBA environment on the server side. The client has the responsibility to release its client
side reference of the ResourceFactory.

3.1.3.1.7.5.3.2 Synopsis.
void shutdown()raises {ShutdownFailure);

MSRC-5000SCA
rev. 2.2

3-32

3.1.3.1.7.5.3.3 Behavior.
The shutdown operation shall result in the ResourceFactory being unavailable to any subsequent
calls to its object reference (i.e. it is released from the CORBA environment).

3.1.3.1.7.5.3.4 Returns.
This operation does not return a value.

3.1.3.1.7.5.3.5 Exceptions/Errors.
This operation does not raise any exceptions.

3.1.3.2 Framework Control Interfaces.
Framework control within a Domain is accomplished by Domain Management, Device, and
Device Management interfaces.

The Domain Management interfaces are Application, ApplicationFactory, and DomainManager.
These interfaces manage the registration and unregistration of applications, devices, and device
managers within the domain and the controlling of applications within the domain. The
implementation of the Application, ApplicationFactory, and DomainManager interfaces are
coupled together and must be delivered together as a complete domain management
implementation and service.

The device interfaces are for the implementation and management of logical Devices within the
domain. The devices within the domain can be simple devices with no loadable, executable, or
aggregate device behavior, or devices with a combination of these behaviors. The device
interfaces are Device, LoadableDevice, ExecutableDevice, and AggregateDevice.

Device management is accomplished by the DeviceManager interface. The DeviceManager is
responsible for creation of logical Devices and launching service applications on these logical
Devices.

Framework Control Interfaces shall be implemented using the CF IDL presented in Appendix C.

3.1.3.2.1 Application.
3.1.3.2.1.1 Description.
The Application class provides the interface for the control, configuration, and status of an
instantiated application in the domain.

The Application interface class inherits the IDL interface of Resource. A created application
instance may contain Resource components and/or non-CORBA components. The Application
interface UML is depicted in Figure 3-11.

The Application interface releaseObject operation provides the interface to release the
computing resources allocated during the instantiation of the Application, and de-allocate the
devices associated with Application instance.

An instance of an Application is returned by the create operation of an instance of the
ApplicationFactory class.

MSRC-5000SCA
rev. 2.2

3-33

3.1.3.2.1.2 UML.

Resource
<<Interface>>

Applicat ion
profile : string
name : string
componentNamingContexts : ComponentElementSequence
componentProcessIds : ComponentProcessIdSequence
componentDevices : DeviceAssignmentSequence
componentImplementations : ComponentElementSequence

<<Interface>>

DeviceAssignmentSequence
<<CORBATypedef>>

Figure 3-11. Application Interface UML

3.1.3.2.1.3 Types.

3.1.3.2.1.3.1 ComponentProcessIdType
The ComponentProcessIdType defines a type for associating a component with its process ID.
This type can be used to retrieve a process ID for a specific component.
struct ComponentProcessIdType
{

string componentId;
unsigned long processId;

};

MSRC-5000SCA
rev. 2.2

3-34

3.1.3.2.1.3.2 ComponentProcessIdSequence
The ComponentProcessIdSequence type defines an unbounded sequence of components’ process
IDs.
typedef sequence <ComponentProcessIdType> ComponentProcessIdSequence;

3.1.3.2.1.3.3 ComponentElementType
The ComponentElementType defines a type for associating a component with an element (e.g.,
naming context, implementation ID).
struct ComponentElementType

{
string componentId;
string elementId;
};

3.1.3.2.1.3.4 ComponentElementSequence
The ComponentElementSequence defines an unbounded sequence of ComponentElementType.
typedef sequence <ComponentElementType> ComponentElementSequence;

3.1.3.2.1.4 Attributes.
3.1.3.2.1.4.1 profile.
This profile attribute contains the Software Profile (3.1.3.4). CORBA-capable and non-CORBA-
capable components have Profile files.

The readonly profile attribute shall contain either a profile element with a file reference to the
SAD profile file or the XML for the SAD profile. Files referenced within a profile will have to
be obtained via FileManager. The Application will have to be queried for profile information for
component files that are referenced by an ID instead of a file name.
readonly attribute string profile;

3.1.3.2.1.4.2 name.
This readonly name attribute shall contain the name of the created Application. The
ApplicationFactory interface’s create operation name parameter provides the name content.
readonly attribute string name;

3.1.3.2.1.4.3 componentNamingContexts.
The componentNamingContexts attribute shall contain the list of components’ Naming Service
Context within the Application for those components using CORBA Naming Service.
readonly attribute ComponentElementSequence componentNamingContexts;

3.1.3.2.1.4.4 componentProcessIds.
The componentProcessIds attribute shall contain the list of components’ process IDs within the
Application for components that are executing on a device.
readonly attribute ComponentProcessIdSequence componentProcessIds;

MSRC-5000SCA
rev. 2.2

3-35

3.1.3.2.1.4.5 componentDevices.
The componentDevices attribute shall contain a list of devices, which each component either
uses, is loaded on or is executed on. Each component (componentinstantiation element in the
Application’s software profile) is associated with a device.
readonly attribute DeviceAssignmentSequence componentDevices;

3.1.3.2.1.4.6 componentImplementations.
The componentImplementations attribute shall contain the list of components’ SPD
implementation IDs within the Application for those components created.
readonly attribute ComponentElementSequence componentImplementations;

3.1.3.2.1.5 General Class Behavior.
The Application shall delegate the implementation of the inherited Resource operations (runTest,
start, stop, configure, and query) to the Application’s Resource component (Assembly
Controller) identified by the Application’s SAD assemblycontroller element. The Application
shall propagate exceptions raised by the Application’s Assembly Controller’s operations. The
initialize operation shall not be propagated to the Application’s components or its Assembly
Controller.

The intialize operation shall cause no action within an Application.

3.1.3.2.1.6 Operations.
3.1.3.2.1.6.1 releaseObject.
3.1.3.2.1.6.1.1 Brief Rationale.
The releaseObject operation terminates execution of the Application, returns all allocated
computing resources, and de-allocates the Resources’ capacities in use by the devices associated
with Application. Before terminating, the Application removes the message connectivity with its
associated Applications (e.g., Ports, Resources, and Logs) in the domain.

3.1.3.2.1.6.1.2 Synopsis.
void releaseObject() raises (ReleaseError);

3.1.3.2.1.6.1.3 Behavior.
The following behavior is in addition to the LifeCycle releaseObject operation behavior.

For each Application component not created by a ResourceFactory, the releaseObject operation
shall release the component by utilizing the Resources’s releaseObject operation. If the
component was created by a ResourceFactory, the releaseObject operation shall release the
component by the ResourceFactory releaseResource operation. The releaseObject operation
shall shutdown a ResourceFactory when no more Resources are managed by the
ResourceFactory. For each allocated device capable of operation execution, the releaseObject
operation shall terminate all processes / tasks of the Application’s components utilizing the
Device’s terminate operation.

For each allocated device capable of memory function, the releaseObject operation shall de-
allocate the memory associated with Application’s component instances utilizing the Device’s
unload operation.

MSRC-5000SCA
rev. 2.2

3-36

The releaseObject operation shall deallocate the Devices that are associated with the Application
being released, based on the Application’s Software Profile. The actual devices deallocated
(Device deallocateCapacity) will reflect changes in capacity based upon component capacity
requirements deallocated from them, which may also cause state changes for the Devices.

The Application shall release all client component references to the Application components.

The releaseObject operation shall disconnect Ports from other Ports that have been connected
based upon the software profile.

The releaseObject operation shall disconnect consumers and producers from a CORBA Event
Service’s event channel based upon the software profile. The releaseObject operation may
destroy a CORBA Event Service’s event channel when no more consumers and producers are
connected to it.

For components (e.g., Resource, ResourceFactory) that are registered with Naming Service, the
releaseObject operation shall unbind those components and destroy the associated naming
contexts as necessary from the Naming Service.

The releaseObject operation for an application shall disconnect Ports first, then release the
Resources and ResourceFactories, then call the terminate operation, and lastly call the unload
operation on the devices.

The releaseObject operation shall, upon successful Application release, write an
ADMINISTRATIVE_EVENT log record.

The releaseObject operation shall, upon unsuccessful Application release, write a
FAILURE_ALARM log record.

The releaseObject operation shall, upon successful Application release, send an event to the
Outgoing Domain Management event channel with event data consisting of a
DomainManagementObjectRemovedEventType. The event data will be populated as follows:

1. The producerId shall be the identifier attribute of the released Application.
2. The sourceId shall be the identifier attribute of the released Application.
3. The sourceName shall be the name attribute of the released Application.
4. The sourceCategory shall be APPLICATION.

The following steps demonstrate one scenario of the Application’s behavior for the release of an
Application that contains ResourceFactory behavior:

1. Client invokes releaseObject operation.

2. Disconnect Ports.

3. Release the ResourceFactory components.

4. Shutdown the ResourceFactory components.

5. Release the Resource components.

6. Terminate the components’ processes.

7. Unload the components’ executable images.

MSRC-5000SCA
rev. 2.2

3-37

8. Change the state of the associated device entries in the Domain Profile to be
available, along with device(s) memory utilization availability and processor
utilization availability based upon the Device Profile and Software Profile.

9. Unbind application components from Naming Service.

10. Log an Event indicating that the Application was either successfully or unsuccessfully
released.

11. Remove the Application reference from the applications attribute.

12. Generate an event to indicate the Application has been removed from the domain.

Figure 3-12 is a collaboration diagram depicting the behavior as described above.

 : Application

 : Log

 : Comm User

 : ResourceFactory

 : Port

 :
Resource

 : Device

CORBA Naming
Service

 :
LoadableDevice

 : ExecutableDevice

10: writeRecords(in
ProducerLogRecordSequence)

3: releaseResource
(in ResourceNumType)

4: shutdown()

2: disconnectPort(in string)

5: releaseObject()
8: deallocateCapacity(in Properties)

9: unbind naming context

6: unload(in string) 7: terminate(in
ProcessID_Type

1: releaseObject()
Outgoing Domain

 Management event channel

11: send DomainManagementObjectRemovedEventType

Figure 3-12. Application Behavior

3.1.3.2.1.6.1.4 Returns.
This operation does not return a value.

3.1.3.2.1.6.1.5 Exceptions/Errors.
The releaseObject operation shall raise a ReleaseError exception when the releaseObject
operation unsuccessfully releases the Application components due to internal processing errors.

MSRC-5000SCA
rev. 2.2

3-38

3.1.3.2.1.6.2 getPort.
3.1.3.2.1.6.2.1 Brief Rationale.
The getPort operation obtains a specific visible Port (e.g., command & control (HCI), data
(red_io or black_io), responses of the Application.

3.1.3.2.1.6.2.2 Synopsis.
Object getPort(in string name) raises (UnknownPort);

3.1.3.2.1.6.2.3 Behavior.
The getPort operation returns object references for port names that are in the Application SAD
externalports element.

3.1.3.2.1.6.2.4 Returns.
The getPort operation shall return object references only for input port names that match the port
names that are in the Application SAD externalports element.

3.1.3.2.1.6.2.5 Exceptions/Errors.
The getPort operation shall raise an UnknownPort exception if the port is invalid.

3.1.3.2.2 ApplicationFactory.
3.1.3.2.2.1 Description.
 The ApplicationFactory interface class provides an interface to request the creation of a specific
type of Application in the domain.

The ApplicationFactory interface class is designed using the Factory Design Pattern. The
Software Profile determines the type of Application that is created by the ApplicationFactory.

3.1.3.2.2.2 UML.

Figure 3-13. ApplicationFactory UML

ApplicationFactory
name : string
identifier : string
softwareProfile : string

create(name : in string, initConfiguration : in Properties, deviceAssignments : in DeviceAssignmentSequence) : Application

<<Interface>>

Application
<<Interface>>

DeviceAssignmentSequence
<<CORBATypedef>>

ErrorNumberType
<<CORBAEnum>>

MSRC-5000SCA
rev. 2.2

3-39

3.1.3.2.2.3 Types.
3.1.3.2.2.3.1 CreateApplicationRequestError Exception.
The CreateApplicationRequestError exception is raised when the parameter CF
DeviceAssignmentSequence contains one (1) or more invalid Application component-to-device
assignment(s).
exception CreateApplicationRequestError
{

DeviceAssignmentSequence invalidAssignment;
}

3.1.3.2.2.3.2 CreateApplicationError Exception.
The CreateApplicationError exception is raised when a create request is valid but the
Application is unsuccessfully instantiated due to internal processing errors. The error number
shall indicate an ErrorNumberType value (e.g., E2BIG, ENAMETOOLONG, ENFILE,
ENODEV, ENOENT, ENOEXEC, ENOMEM, ENOTDIR, ENXIO, EPERM). The message is
component-dependent, providing additional information describing the reason for the error.
exception CreateApplicationError{ ErrorNumberType errorNumber; string msg;}

3.1.3.2.2.3.3 Exception InvalidInitConfiguration
The InvalidInitConfiguration exception is raised when the input initConfiguration parameter is
invalid.
exception InvalidInitConfiguration
{

Properties invalidProperties;
};

3.1.3.2.2.4 Attributes.
3.1.3.2.2.4.1 name.
The readonly name attribute shall contain the type of Application that can be instantiated by the
ApplicationFactory.
readonly attribute string name;

3.1.3.2.2.4.2 softwareProfile.
The softwareProfile attribute contains the Software Profile for the Application that can be created
by the ApplicationFactory.

The readonly softwareProfile attribute shall contain either a profile element with a file reference
to the SAD profile or the XML for the SAD profile. Files referenced within the profile will have
to be obtained from a FileManager. The ApplicationFactory will have to be queried for profile
information for component files that are referenced by an ID instead of a file name.
readonly attribute string softwareProfile;

3.1.3.2.2.4.3 identifier.
The readonly identifier attribute shall contain the unique identifier for an ApplicationFactory
instance. The identifier shall be identical to the softwareassembly element id attribute of the
ApplicationFactory’s Software Assembly Descriptor file.

MSRC-5000SCA
rev. 2.2

3-40

readonly attribute string identifier;

3.1.3.2.2.5 Operations.
3.1.3.2.2.5.1 create.
3.1.3.2.2.5.1.1 Brief Rationale.
The create operation is used to create an Application within the system domain.

The create operation provides a client interface to request the creation of an Application on client
requested device(s) or the creation of an Application in which the ApplicationFactory determines
the necessary device(s) required for instantiation of the Application.

3.1.3.2.2.5.1.2 Synopsis.
Application create(in string name, in Properties initConfiguration, in
DeviceAssignmentSequence deviceAssignments) raises (CreateApplicationError,
CreateApplicationRequestError, InvalidInitConfiguration);

3.1.3.2.2.5.1.3 Behavior.
An Application can be comprised of one or more components (e.g., Resources, Devices, etc.).
The SAD contains Software Package Descriptors (SPDs) for each Application component. The
SPD specifies the Device implementation criteria for loading dependencies (processor kind, etc.)
and processing capacities (e.g., memory, process) for an application component. The create
operation shall use the SAD SPD implementation element to locate candidate devices capable of
loading and executing Application components.

If deviceAssignments (not zero length) are provided, the ApplicationFactory verifies each device
assignment, for the specified component, against the component’s SPD implementation element.

The create operation shall allocate (Device allocateCapacity) component capacity requirements
against candidate devices to determine which candidate devices satisfy all SPD implementation
criteria requirements and SAD partitioning requirements (e.g., components HostCollocation,
etc.). The create operation shall only use Devices that have been granted successful capacity
allocations for loading and executing Application components, or used for data processing. The
actual Devices chosen will reflect changes in capacity based upon component capacity
requirements allocated to them, which may also cause state changes for the Devices.

The create operation shall load the Application components (including all of the Application-
dependent components) to the chosen device(s).

The create operation shall execute the application components (including all of the application-
dependent components) as specified in the application’s Software Assembly Descriptor (SAD)
file. The create operation shall use each component’s SPD implementation code’s stack size and
priority elements, when specified, for the execute options parameters.

The create operation shall pass the mandatory execute parameters of a Naming Context IOR,
Name Binding, and the identifier for the component in the form of CF Properties to the entry
points of Resource components to be executed via a Device’s execute operation.

The execute parameter for the Naming Context IOR shall be inserted into a CF Properties type.
The CF Properties ID element shall be set to "NAMING_CONTEXT_IOR" and the CF
Properties value element set to the stringified IOR of a naming context to which the component
will bind. The create operation shall create any naming contexts that do not exist to which the

MSRC-5000SCA
rev. 2.2

3-41

component will bind to the Naming Context IOR. The structure of the naming context path shall
be "/ DomainName / [optional naming context sequences]". In the naming context path, each
"slash" (/) represents a separate naming context.

The execute parameter of Name Binding shall be inserted into a CF Properties type. The CF
Properties ID element shall be set to "NAME_BINDING" and CF Properties value element set
to a string in the format of "ComponentName_UniqueIdentifier". The ComponentName value is
the SAD componentinstantiation findcomponent namingservice element’s name attribute. The
UniqueIdentifier is determined by the implementation. The Name Binding parameter is used by
the component to bind its object reference to the Naming Context IOR parameter.

The create operation uses "ComponentName_UniqueIdentifier" to retrieve the component’s
object reference from the Naming Context IOR (See also section 3.2.1.3.). Due to the dynamics
of bind and resolve to CORBA Naming Service, the create operation should provide sufficient
attempts to retrieve component object references from CORBA Naming Service prior to
generating an exception.

For the component identifier execute parameter, the create operation shall be inserted in a CF
Properties type. The CF Properties ID element shall be set to "COMPONENT_IDENTIFIER"
and the CF Properties value element to the string format of Component_Instantiation_Identifier:
Application_Name. The Component_Instantiation_Identifier is created using the
componentinstantiation element id attribute for the component in the application’s SAD file.
The Application_Name field shall be identical to the create operation’s input name parameter.
The Application_Name field provides a specific instance qualifier for executed Resource
components.

The create operation shall pass the componentinstantiation element “execparam” properties that
have values as parameters to execute operation. The create operation passes “execparam”
parameters values as string values.

The create operation shall, in order, initialize Resources, then establish connections for
Resources, and finally configure the Resources.

The create operation will only configure the application’s assemblycontroller component.

The create operation shall initialize an Application component provided the component
implements the LifeCycle interface.

The create operation shall configure an application’s assemblycontroller component provided the
assemblycontroller has configure readwrite or writeonly properties with values. The create
operation shall use the union of the input initConfiguration properties of the create operation and
the assemblycontroller’s componentinstantiation writeable “configure” properties that have
values. The input initConfiguration parameter shall have precedence over the
assemblycontroller’s writeable “configure” property values. The create operation, when creating
a component from a ResourceFactory, shall pass the componentinstantiation
componentresoursefactoryref element “factoryparam” properties that have values as qualifiers
parameters to the referenced ResourceFactory component’s createResource operation.

The create operation interconnects Application components' (Resources' or Devices') ports in
accordance with the SAD. The create operation obtainsPorts in accordance with the SAD via
PortSupplier’s getPort operation. The create operation uses the SAD connectinterface element

MSRC-5000SCA
rev. 2.2

3-42

id attribute as the unique identifier for a specific connection when provided. The create
operation creates a connection ID when no SAD connectinterface element attribute id is
specified for a connection. The create operation obtains a Resource in accordance with the SAD
via the CORBA Naming Service or a ResourceFactory.. The ResourceFactory can be obtained
by using the CORBA Naming Service. The create operation shall pass, with invocation of each
ResourceFactory createResource operation, the ResourceFactory configuration properties
associated with that Resource as dictated by the SAD.

The dependencies to Log, FileManager, FileSystem, CORBA Event Service, and CORBA
Naming Service will be specified as connections in the SAD using the domainfinder element.
The create operation will establish these connections. For connections established for a Log, the
create operation shall create a unique producer log ID for each log producer. The create
operation shall invoke the PropertySet configure operation once, and only once, per log producer
(as described by the SAD usesport element) in order to set its unique PRODUCER_LOG_ID
(see section 3.1.3.3.5.5.1.2 for details).For connections established for a CORBA Event
Service’s event channel, the create operation shall connect a COSEventComm PushConsumer or
PushSupplier object to the event channel as specified in the SAD’s domainfinder element. If the
event channel does not exist, the create operation shall create the event channel.

If the Application is successfully created, the create operation shall return an Application
component reference for the created Application. A sequence of created Application references
can be obtained using the DomainManager’s readonly applications attribute.

The create operation shall, upon successful Application creation, write an
ADMINISTRATIVE_EVENT log record.

The create operation shall, upon unsuccessful Application creation, write a FAILURE_ALARM
log record.

The dependencies to Log, FileManager, and FileSystem will appear as connections in the SAD
using the domainfinder element. The create operation will establish these connections. For
connections established for a Log, the create operation shall create a unique producer log ID one
time for each log producer. The create operation shall invoke the PropertySet configure
operation one time per log producer (as described by the SAD usesport element) in order to set
its unique PRODUCER_LOG_ID (see section 3.1.2.3.1 for details).

The create operation shall, upon successful Application creation, send an event to the Outgoing
Domain Management event channel with event data consisting of a
DomainManagementObjectAddedEventType. The event data will be populated as follows:

1. The producerId shall be the identifier attribute of the ApplicationFactory.
2. The sourceId shall be the identifier attribute of the created Application.
3. The sourceName shall be the name attribute of the created Application.
4. The sourceIOR shall be the Application component reference for the created

Application.
5. The sourceCategory shall be APPLICATION.

The following steps demonstrate one scenario of the ApplicationFactory’s behavior for the
creation of an Application:

MSRC-5000SCA
rev. 2.2

3-43

1. Client invokes the create operation.

2. Evaluate the Domain Profile for available Devices that meet the Application’s
memory and processor requirements, available Dependent Applications (e.g., I/O or
Utility resources), and dependent libraries needed by the Application. Create an
instance of an Application, if the requested Application can be created. Update the
Device(s) memory and processor utilization.

3. Allocate the Device(s) memory and processor utilization.

4. Load the Application components on the devices using the appropriate Device(s)
interface provided the Application component hasn’t already been loaded.

5. Execute the Application components on the devices using the appropriate Device
interface as indicated by the application’s Software Profile.

6. Obtain the component reference (Resource or ResourceFactory) as described by the
SAD.

7. If the component obtained from CORBA Naming Services is a ResourceFactory as
indicated by the SAD, then narrow the component reference to be a ResourceFactory
component.

8. If the component is a ResourceFactory, then create a Resource using the
ResourceFactory interface.

9. If the components obtained from Naming Services are Resources supporting the
Resource interface as indicated by the SCDs, then narrow the components reference
to be Resource components.

10. Initialize the Application.

11. Get ports for the resources in order to interconnect the Resources' ports together.

12. Connect the ports that interconnect the Resources’ ports together.

13. Configure the Application.

14. Return the Application object reference and log message.

15. Generate an event to indicate the Application has been added to the domain.

Figure 3-14 is a collaboration diagram depicting the behavior as described above.

MSRC-5000SCA
rev. 2.2

3-44

 : ApplicationFactory
Comm user

 :
Resource

CORBANaming
Services

Domain
Profile

 : ResourceFactory

 : Log

Producer :
Port

 : Device

 :
LoadableDevice

 : ExecutableDevice

8: createResource(in
ResourceNumType, in

Properties)

7: _narrow()

13: configure(in Properties)

10: initialize()
9: _narrow()

11: getPort(in string)6: Obtain component
reference per SAD

(Resource or
ResourceFactory)

2: Evaluate & Obtain
Application Profile Instance

14: writeRecords(in ProducerLogRecordSequence)

12: Connect the ports that
interconnect the Resources

3: allocateCapacity
(in Properties)

4: load(in
FileSystem, in

string, in
LoadType) 5: execute(in

string, in
Properties, in

Properties)

1: create(in string, in Properties, in DeviceAssignmentSequence)
Outgoing Domain Management

event channel15: send DomainManagementObjectAddedEventType

Figure 3-14. ApplicationFactory Behavior

3.1.3.2.2.5.1.4 Returns.
The create operation returns a duplicated Application reference for the created Application.

3.1.3.2.2.5.1.5 Exceptions/Errors.
The create operation shall raise the CreateApplicationRequestError exception when the
parameter CF DeviceAssignmentSequence contains one (1) or more invalid Application
component to device assignment(s).

The create operation shall raise the CreateApplicationError exception when the create request is
valid but the Application cannot be successfully instantiated due to internal processing error(s).

The create operation shall raise the InvalidInitConfiguration exception when the input
initConfiguration parameter is invalid. The InvalidInitConfiguration invalidProperties shall
identify the property that is invalid.

3.1.3.2.3 DomainManager.
3.1.3.2.3.1 Description.
The DomainManager interface is for the control and configuration of the system domain.

MSRC-5000SCA
rev. 2.2

3-45

The DomainManager interface can be logically grouped into three categories: Human Computer
Interface (HCI), Registration, and CF administration.

The HCI operations are used to configure the domain, get the domain’s capabilities (Devices,
Services, and Applications), and initiate maintenance functions. Host operations are performed
by an HCI client capable of interfacing to the DomainManager.

The registration operations are used to register / unregister DeviceManagers, DeviceManager’s
Devices, DeviceManager’s Services, and Applications at startup or during run-time for dynamic
device, service, and application extraction and insertion.

The administration operations are used to access the interfaces of registered DeviceManagers
and DomainManager's FileManager.

3.1.3.2.3.2 UML.
The DomainManager Interface UML is depicted in Figure 3-15.

DomainManager
identifier : string
deviceManagers : DeviceManagerSequence
applications : ApplicationSequence
applicationFactories : ApplicationFactorySequence
fileMgr : FileManager
domainManagerProfile : string

registerDevice(registeringDevice : in Device, registeredDeviceMgr : in DeviceManager) : void
registerDeviceManager(deviceMgr : in DeviceManager) : void
unregisterDeviceManager(deviceMgr : in DeviceManager) : void
unregisterDevice(unregisteringDevice : in Device) : void
installApplication(profileFileName : in string) : void
uninstallApplication(applicationId : in string) : void
registerService(registeringService : in Object, registeredDeviceMgr : in DeviceManager, name : in string) : void
unregisterService(unregisteringService : in Object, name : in string) : void
registerWithEventChannel(registeringObject : in Object, registeringId : in string, eventChannelName : in string) : void
unregisterFromEventChannel(unregisteringId : in string, eventChannelName : in string) : void

<<Interface>>

DeviceManager
<<Interface>>

FileManager
<<Interface>>

uses

Device
<<Interface>>

InvalidFileName
<<CORBAException>>

InvalidObjectReference
<<CORBAException>>

InvalidProfile
<<CORBAException>>

Application
<<Interface>>

ApplicationFactory
<<Interface>>

PropertySet

configure()
query()

<<Interface>>

ErrorNumberType
<<CORBAEnum>>

Figure 3-15. DomainManager Interface UML

MSRC-5000SCA
rev. 2.2

3-46

3.1.3.2.3.3 Types.
3.1.3.2.3.3.1 ApplicationInstallationError.
The ApplicationInstallationError exception type is raised when an Application installation has
not completed correctly. The error number shall indicate an ErrorNumberType value (e.g.,
EINVAL, ENAMETOOLONG, ENOENT, ENOMEM, ENOSPC, ENOTDIR, ENXIO). The
message is component-dependent, providing additional information describing the reason for the
error.
exception ApplicationInstallationError{ ErrorNumberType errorNumber; string
msg; };

3.1.3.2.3.3.2 InvalidIdentifier.
The InvalidIdentifier exception indicates an application identifier is invalid.
exception InvalidIdentifier {};

3.1.3.2.3.3.3 DeviceManagerSequence.
This type defines an unbounded sequence of DeviceManager(s).
typedef sequence <DeviceManager> DeviceManagerSequence

3.1.3.2.3.3.4 ApplicationSequence.
This type defines an unbounded sequence of Application(s).
typedef sequence < Application> ApplicationSequence

3.1.3.2.3.3.5 ApplicationFactorySequence.
This type defines an unbounded sequence of ApplicationFactory(s).
typedef sequence < ApplicationFactory> ApplicationFactorySequence

3.1.3.2.3.3.6 DeviceManagerNotRegistered Exception
The DeviceManagerNotRegistered exception indicates the registering Device’s DeviceManager
is not registered in the DomainManager. A Device’s DeviceManager has to be registered prior
to a Device registration to the DomainManager.
exception DeviceManagerNotRegistered {};

3.1.3.2.3.3.7 RegisterError.
The RegisterError exception indicates that an internal error has occurred to prevent
DomainManager registration operations from successful completion. The error number shall
indicate an ErrorNumberType value. The message is component-dependent, providing additional
information describing the reason for the error.
exception RegisterError{ ErrorNumberType errorNumber; string msg;};

3.1.3.2.3.3.8 UnregisterError.
The UnregisterError exception indicates that an internal error has occurred to prevent
DomainManager unregister operations from successful completion. The error number shall

MSRC-5000SCA
rev. 2.2

3-47

indicate an ErrorNumberType value. The message is component-dependent, providing additional
information describing the reason for the error.
exception UnregisterError{ ErrorNumberType errorNumber; string msg; };

3.1.3.2.3.3.9 ApplicationUninstallationError.
The ApplicationUninstallationError exception type is raised when an Application uninstallation
has not completed correctly. The error number shall indicate an ErrorNumberType value. The
message is component-dependent, providing additional information describing the reason for the
error.
exception ApplicationUninstallationError{ ErrorNumberType errorNumber; string
msg;};

3.1.3.2.3.3.10 InvalidEventChannelName.
The InvalidEventChannelName exception indicates that a DomainManager was not able to
locate the event channel.
exception InvalidEventChannelName{};”

3.1.3.2.3.3.11 AlreadyConnected.
The AlreadyConnected exception indicates that a registering consumer is already connected to
the specified event channel.
exception AlreadyConnected{};”

3.1.3.2.3.3.12 NotConnected.
The NotConnected exception indicates that the unregistering consumer was not connected to the
specified event channel.
exception NotConnected{};”

3.1.3.2.3.4 Attributes.
3.1.3.2.3.4.1 deviceManagers.
The deviceManagers attribute is read-only containing a sequence of registered DeviceManagers
in the domain. The readonly deviceManagers attribute shall contain a list of registered
DeviceManagers that have registered with the DomainManager. The DomainManager shall
write an ADMINISTRATIVE_EVENT log to a DomainManager’s Log, when the
deviceManagers attribute is obtained by a client.
readonly attribute DeviceManagerSequence deviceManagers;

3.1.3.2.3.4.2 applications.
The applications attribute is read-only containing a sequence of instantiated Applications in the
domain. The readonly applications attribute shall contain the list of Applications that have been
instantiated. The DomainManager shall write an ADMINISTRATIVE_EVENT log record to a
DomainManager’s Log, when the application’s attribute is obtained by a client.
readonly attribute ApplicationSequence applications;

MSRC-5000SCA
rev. 2.2

3-48

3.1.3.2.3.4.3 applicationFactories.
The readonly applicationFactories attribute shall contain a list with one ApplicationFactory per
application (SAD file and associated files) successfully installed (i.e. no exception raised). The
DomainManager shall write an ADMINISTRATIVE_EVENT log record to a
DomainManager’s Log, when the applicationFactories attribute is obtained by a client.
readonly attribute ApplicationFactorySequence applicationFactories;

3.1.3.2.3.4.4 fileMgr.
The readonly fileMgr attribute shall contain the DomainManager’s FileManager. The
DomainManager shall write an ADMINISTRATIVE_EVENT log record to a
DomainManager’s Log, when the fileMgr attribute is obtained by a client.
readonly attribute FileManager fileMgr;

3.1.3.2.3.4.5 domainManagerProfile.
The domainManagerProfile attribute contains the DomainManager’s profile.

The readonly domainManagerProfile attribute shall contain either a profile element with a file
reference to the DomainManager Configuration Descriptor (DMD) profile or the XML for the
DomainManager’s (DMD) profile. Files referenced within the profile will have to be obtained
from the DomainManager’s FileManager.
readonly attribute string domainManagerProfile;

3.1.3.2.3.4.6 identifier.
The readonly identifier attribute shall contain a unique identifier for a DomainManager instance.
The identifier shall be identical to the domainmanagerconfiguration element id attribute of the
DomainManager’s Descriptor (DMD) file.
readonly attribute string identifier;

3.1.3.2.3.5 General Class Behavior.
 During component construction the DomainManager shall register itself with the CORBA
Naming Service. During Naming Service registration the DomainManager shall create a
"naming context" using "/DomainName" as its name.ID component and "" (Null string) as its
name.kind component, then create a "name binding" to the "/DomainName" naming context
using "/DomainManager" as its name.ID component, "" (Null string) as its name.kind
component, and the DomainManager's object reference. (See also 3.1.3.2.2.5.1.3)

Since a log service is not a required component of a JTRS installation, a DomainManager
implementation may, or may not have access to a Log. However, if log service(s) are available, a
DomainManager implementation may use one or more of them. The Logs utilized by the
DomainManager implementation shall be defined in the DMD. See Appendix D for further
description of the DMD file.

Once a service specified in the DMD is successfully registered with the DomainManager (via
registerDeviceManager or registerService operations), the DomainManager shall begin to use
the service (e.g., Log).

MSRC-5000SCA
rev. 2.2

3-49

The DomainManager shall create its own FileManager component that consists of all registered
DeviceManager’s FileSystems.
The DomainManager shall restore ApplicationFactories after startup for applications that were
previously installed by the DomainManager installApplication operation. The DomainManager
shall add the restored ApplicationFactories to the DomainManager’s applicationFactories
attribute.

The DomainManager shall create the Incoming Domain Management and Outgoing Domain
Management event channels.

3.1.3.2.3.6 Operations.
3.1.3.2.3.6.1 registerDeviceManager.
3.1.3.2.3.6.1.1 Brief Rationale.
The registerDeviceManager operation is used to register a DeviceManager, its Device(s), and its
Services. Software profiles can also be obtained from the DeviceManager's FileSystem.
3.1.3.2.3.6.1.2 Synopsis.
void registerDeviceManager(in DeviceManager deviceMgr) raises
(InvalidObjectReference, InvalidProfile, RegisterError);

3.1.3.2.3.6.1.3 Behavior.
The registerDeviceManager operation verifies that the input parameter, deviceMgr, is a not a nil
CORBA component reference.

The registerDeviceManager operation shall add the input deviceMgr to the DomainManager’s
deviceManagers attribute, if it does not already exist. The registerDeviceManager operation
shall add the input deviceMgr’s registeredDevices and each registeredDevice’s attributes (e.g.,
identifier, softwareProfile’s allocation properties, etc.) to the DomainManager. The
registerDeviceManager operation associates the input deviceMgr’s with the input deviceMgr’s
registeredDevices in the DomainManager in order to support the unregisterDeviceManager
operation.

The registerDeviceManager operation shall add the input deviceMgr’s registeredServices and
each registeredService’s names to the DomainManager. The registerDeviceManager operation
associates the input deviceMgr’s with the input deviceMgr’s registeredServices in the
DomainManager in order to support the unregisterDeviceManager operation.

The registerDeviceManager operation shall perform the connections specified in the connections
element of the deviceMgr’s Device Configuration Descriptor (DCD) file. If the
DeviceManager’s DCD describes a connection for a service that has not been registered with the
DomainManager, the registerDeviceManager operation shall establish any pending connection
when the service registers with the DomainManager by the registerDeviceManager operation.
For connections established for a CORBA Event Service’s event channel, the
registerDeviceManager operation shall connect a CosEventComm PushConsumer or
PushSupplier object to the event channel as specified in the DCD’s domainfinder element. If the
event channel does not exist, the registerDeviceManager operation shall create the event
channel.

MSRC-5000SCA
rev. 2.2

3-50

The registerDeviceManager operation shall obtain all the Software profiles from the registering
DeviceManager's FileSystems.

The registerDeviceManager operation shall mount the DeviceManager’s FileSystem to the
DomainManager’s FileManager. The mounted FileSystem name shall have the format,
“/DomainName/HostName”, where DomainName is the name of the domain and HostName is
the input deviceMgr’s label attribute.

The registerDeviceManager operation shall, upon unsuccessful DeviceManager registration,
write a FAILURE_ALARM log record to a DomainManager’s Log.

The registerDeviceManager operation shall, upon successful DeviceManager registration, send
an event to the Outgoing Domain Management event channel with event data consisting of a
DomainManagementObjectAddedEventType. The event data will be populated as follows:

1. The producerId shall be the identifier attribute of the DomainManager.
2. The sourceId shall be the identifier attribute of the registered DeviceManager.
3. The sourceName shall be the label attribute of the registered DeviceManager.
4. The sourceIOR shall be the registered DeviceManager object reference.
5. The sourceCategory shall be DEVICE_MANAGER.

The following UML sequence diagram (Figure 3-16) illustrates the DomainManager’s behavior
for the registerDeviceManager operation.

MSRC-5000SCA
rev. 2.2

3-51

readonly
registeredServices
att ribute, add to
domain services

 : DomainManager : Log Outgoing Doman Management
Event Channel

 : PortXML SPD
Parser

 : Device : DeviceManager

Device's readonly attributes (identifier,
softwareProfile, etc.) This step is repeated
for each attribute.

This step is optional provided
the XML has not changed and
has already been parsed.

Steps 9 thru 15 needs to be repeated for each
Device registered with the DeviceManager. steps
12 thru 15 are optional, provided the Device is
using a Service and the Service exists in the
Domain. Devices that were previously registered
that are waiting for Services are also connected to
services that come into existence during a
DeviceManager registration.

1: registerDeviceManager(in DeviceManager)

20: wri teRecords(in ProducerLogRecordSequence)

8: get attributes

10: Parse and get device propert ies (e.g. , al location)

6: getRegisteredDevices

readonly
registeredDevices
att ribute

4: getFileSys

5: mount DeviceManager's FileSystem to DomainManager's FileManager

2: add DeviceManager to DomainManager

11: add DeviceManager's registeredDevice to DomainManager

12: getPort(in string)

13: Narrow to Port Interface

14: Obtain a Service (e.g. , Log) from Domain

15: connectPort(in Object, in string)

16: getPort(in string)

18: Obtain a Service (e.g., Log) from Domain

19: connectPort(in Object, in string)

Steps 16 thru 20 are
optional, provided the
DeviceManager is using
a Service and the Service
exists in the Domain.

17: Narrow to Port Interface

7: getDeviceConfigurationProfile

readonly
deviceConfigurationProfile
attribute, neded for
Devices' connections

9: getRegisteredServices

3: send DomainManagementObjectAddedEventType for the added DeviceManager

fi leSys readonly
att ribute

Figure 3-16. DomainManager Sequence Diagram for registerDeviceManager Operation

3.1.3.2.3.6.1.4 Returns.
This operation does not return a value.

MSRC-5000SCA
rev. 2.2

3-52

3.1.3.2.3.6.1.5 Exceptions/Errors.
The registerDeviceManager operation shall raise the CF InvalidObjectReference exception when
the input parameter deviceMgr contains an invalid reference to a DeviceManager interface.

The registerDeviceManager operation shall raise the RegisterError exception when an internal
error exists which causes an unsuccessful registration.

3.1.3.2.3.6.2 registerDevice.
3.1.3.2.3.6.2.1 Brief Rationale.
The registerDevice operation is used to register a Device for a specific DeviceManager in the
DomainManager's Domain Profile.

3.1.3.2.3.6.2.2 Synopsis.
void registerDevice(in Device registeringDevice, in DeviceManager
registeredDeviceMgr) raises (InvalidObjectReference, InvalidProfile,
DeviceManagerNotRegistered, RegisterError);

3.1.3.2.3.6.2.3 Behavior.
The registerDevice operation verifies that the input parameters, registeringDevice and
registeredDeviceMgr, are not nil CORBA component references.

The registerDevice operation shall add the registeringDevice and the registeringDevice’s
attributes (e.g., identifier, softwareProfile’s allocation properties, etc.) to the DomainManager, if
it does not already exist.

The registerDevice operation associates the input registeringDevice with the input
registeredDeviceMgr in the DomainManager when the input registeredDeviceMgr is a valid
registered DeviceManager in the DomainManager.

When the registering Device’s parent DeviceManager’s DCD describes service connections for
the registering Device, the registerDevice operation shall establish the connections.

The registerDevice operation shall, upon successful device registration, write an
ADMINISTRATIVE_EVENT log record to a DomainManager’s Log, to indicate that the device
has successfully registered with the DomainManager.

Upon unsuccessful device registration, the registerDevice operation shall write a
FAILURE_ALARM log record to a DomainManager’s Log, when the InvalidProfile exception
is raised to indicate that the registeringDevice has an invalid profile.

Upon unsuccessful device registration, the registerDevice operation shall write a
FAILURE_ALARM log record to a DomainManager’s Log, indicating that the device could not
register because the DeviceManager is not registered with the DomainManager.

Upon unsuccessful device registration, the registerDevice operation shall write a
FAILURE_ALARM log record to a DomainManager’s Log, because of an invalid reference
input parameter.

Upon unsuccessful device registration, the registerDevice operation shall write a
FAILURE_ALARM log record to a DomainManager’s Log, because of an internal registration
error.

MSRC-5000SCA
rev. 2.2

3-53

The registerDevice operation shall, upon successful Device registration, send an event to the
Outgoing Domain Management event channel with event data consisting of a
DomainManagementObjectAddedEventType. The event data will be populated as follows:

1. The producerId shall be the identifier attribute of the DomainManager.
2. The sourceId shall be the identifier attribute of the registered Device.
3. The sourceName shall be the label attribute of the registered Device.
4. The sourceIOR shall be the registered Device object reference.
5. The sourceCategory shall be DEVICE.

The following UML sequence diagram (Figure 3-17) illustrates the DomainManager's behavior
for the registerDevice operation.

 : DomainManager : Log Outgoing Domain Management
Event Channel

 : PortXML SPD
Parser

registeringDevice :
Device

 : DeviceManager

1: registerDevice(in Device, in DeviceManager)

11: writeRecords(in ProducerLogRecordSequence)

2: get attributes

Device's readonly attributes (identifier,
sofwtareProfile, etc.) This step is repeated
for each at tribute.

3: Parse and get device properties (e.g., allocation)

This step is optional provided
the XML has not changed and
has already been parsed.

4: associate registeringdevice with
registeredDeviceManager in DomainManager

5: add registeringDevice to DomainManager

7: Narrow to Port Interface

8: Obtain Service (e.g., Log) from Domain

9: connectPort(in Object, in string)

Steps 7 thru 9 are optional,
provided the registeringDevice
is using a Service and the
Service exists in the Domain.

6: getDeviceConfigurationProfile

10: send DomainManagementObjectAddedEventType for the Added Device

Figure 3-17. DomainManager Sequence Diagram for registerDevice Operation

3.1.3.2.3.6.2.4 Returns.
This operation does not return a value.

3.1.3.2.3.6.2.5 Exceptions/Errors.
The registerDevice operation shall raise the CF InvalidProfile exception when:

MSRC-5000SCA
rev. 2.2

3-54

1. The Device's SPD file and the SPD’s referenced files do not exist or cannot be processed
due to the file not being compliant with XML syntax, or

2. The Device’s SPD does not reference allocation properties.

The registerDevice operation shall raise a DeviceManagerNotRegistered exception when the
input registeredDeviceMgr (not nil reference) is not registered with the DomainManager.

The registerDevice operation shall raise the CF InvalidObjectReference exception when input
parameters registeringDevice or registeredDeviceMgr contains an invalid reference.

The registerDevice operation shall raise the RegisterError exception when an internal error exists
which causes an unsuccessful registration.

3.1.3.2.3.6.3 installApplication.
3.1.3.2.3.6.3.1 Brief Rationale.
The installApplication operation is used to install new application software in the
DomainManager's Domain Profile. An installer application typically invokes this operation
when it has completed the installation of a new application into the domain.

3.1.3.2.3.6.3.2 Synopsis.
void installApplication(in string profileFileName) raises (InvalidProfile,
InvalidFileName, ApplicationInstallationError);

3.1.3.2.3.6.3.3 Behavior.
The profileFileName is the absolute path of the profile filename.

The installApplication operation shall verify the application’s SAD file exists in the
DomainManager’s FileManager and all the files the application is dependent on are also resident.

The installApplication operation shall write an ADMINISTRATIVE_EVENT log record to a
DomainManager’s Log, upon successful Application installation.

The installApplication operation shall, upon unsuccessful application installation, write a
FAILURE_ALARM log record to a DomainManager’s Log.

The installApplication operation shall, upon successful application installation, send an event to
the Outgoing Domain Management event channel with event data consisting of a
DomainManagementObjectAddedEventType. The event data will be populated as follows:

1. The producerId shall be the identifier attribute of the DomainManager.
2. The sourceId shall be the identifier attribute of the installed ApplicationFactory.
3. The sourceName shall be the name attribute of the installed ApplicationFactory.
4. The sourceIOR shall be the installed ApplicationFactory object reference.
5. The sourceCategory shall be APPLICATION_FACTORY.

3.1.3.2.3.6.3.4 Returns.
This operation does not return a value.

MSRC-5000SCA
rev. 2.2

3-55

3.1.3.2.3.6.3.5 Exceptions/Errors.
The installApplication operation shall raise the ApplicationInstallationError exception when the
installation of the Application file(s) was not successfully completed.

The installApplication operation shall raise the InvalidFileName exception when the input SAD
file or any referenced file name does not exist in the file system as defined in the absolute path of
the input profileFileName. When the InvalidFileName exception occurs, the installApplication
operation shall log a FAILURE_ALARM log record to a DomainManager’s Log with a message
consisting of “installApplication::invalid file is xxx”, where “xxx” is the input or referenced file
name that is bad.

The installApplication operation shall raise the CF InvalidProfile exception when the input SAD
file or any referenced file is not compliant with XML DTDs defined in Appendix D or
referenced property definitions are missing. When the CF InvalidProfile exception occurs, the
installApplication operation shall log a FAILURE_ALARM log record to a DomainManager’s
Log with a message consisting of “installApplication::invalid Profile is yyy,” where “yyy” is the
input or referenced file name that is bad along with the element or position within the profile that
is bad.

3.1.3.2.3.6.4 unregisterDeviceManager.
3.1.3.2.3.6.4.1 Brief Rationale.
The unregisterDeviceManager operation is used to unregister a DeviceManager component from
the DomainManager’s Domain Profile. A DeviceManager may be unregistered during run-time
for dynamic extraction or maintenance of the DeviceManager.

3.1.3.2.3.6.4.2 Synopsis.
void unregisterDeviceManager(in DeviceManager deviceMgr) raises
(InvalidObjectReference, UnregisterError);

3.1.3.2.3.6.4.3 Behavior.
The unregisterDeviceManager operation shall unregister a DeviceManager component from the
DomainManager.

The unregisterDeviceManager operation shall release all device(s) and service(s) associated with
the DeviceManager that is being unregistered.

The unregisterDeviceManager operation shall disconnect consumers and producers (e.g.,
Devices, Log, DeviceManager, etc.) from a CORBA Event Service event channel based upon the
software profile. The unregisterDeviceManager operation may destroy the CORBA Event
Service event channel when no more consumers and producers are connected to it.

The unregisterDeviceManager operation shall unmount all DeviceManager’s FileSystems from
its File Manager.

The unregisterDeviceManager operation shall, upon the successful unregistration of a
DeviceManager, write an ADMINISTRATIVE_EVENT log record to a DomainManager’s Log.

The unregisterDeviceManager operation shall, upon unsuccessful unregistration of a
DeviceManager, write a FAILURE_ALARM log record to a DomainManager’s Log.

MSRC-5000SCA
rev. 2.2

3-56

The unregisterDeviceManager operation shall, upon successful unregistration, send an event to
the Outgoing Domain Management event channel with event data consisting of a
DomainManagementObjectRemovedEventType. The event data will be populated as follows:

1. The producerId shall be the identifier attribute of the DomainManager.
2. The sourceId shall be the identifier attribute of the unregistered DeviceManager.
3. The sourceName shall be the label attribute of the unregistered DeviceManager.
4. The sourceCategory shall be DEVICE_MANAGER.

3.1.3.2.3.6.4.4 Returns.
This operation does not return a value.

3.1.3.2.3.6.4.5 Exceptions/Errors.
The unregisterDeviceManager operation shall raise the CF InvalidObjectReference when the
input parameter DeviceManager contains an invalid reference to a DeviceManager interface.

The unregisterDeviceManager operation shall raise the UnregisterError exception when an
internal error exists which causes an unsuccessful unregistration.

3.1.3.2.3.6.5 unregisterDevice.
3.1.3.2.3.6.5.1 Brief Rationale.
The unregisterDevice operation is used to remove a device entry from the DomainManager for a
specific DeviceManager.

3.1.3.2.3.6.5.2 Synopsis.
void unregisterDevice(in Device unregisteringDevice) raises
(InvalidObjectReference, UnregisterError)

3.1.3.2.3.6.5.3 Behavior.
The unregisterDevice operation shall remove a device entry from the DomainManager.

The unregisterDevice operation shall release (client-side CORBA release) the
unregisteringDevice from the Domain Manager.

The unregisterDevice operation shall disconnect the Device’s consumers and producers from a
CORBA Event Service event channel based upon the software profile. The unregisterDevice
operation may destroy the CORBA Event Service event channel when no more consumers and
producers are connected to it.

The unregisterDevice operation shall, upon the successful unregistration of a Device, write an
ADMINISTRATIVE_EVENT log record to a DomainManager’s Log.

The unregisterDevice operation shall, upon unsuccessful unregistration of a Device, write a
FAILURE_ALARM log record to a DomainManager’s Log.

The unregisterDevice operation shall, upon successful Device unregistration, send an event to the
Outgoing Domain Management event channel with event data consisting of a
DomainManagementObjectRemovedEventType. The event data will be populated as follows:

1. The producerId shall be the identifier attribute of the DomainManager.
2. The sourceId shall be the identifier attribute of the unregistered Device.

MSRC-5000SCA
rev. 2.2

3-57

3. The sourceName shall be the lable attribute of the unregistered Device.
4. The sourceCategory shall be DEVICE.

3.1.3.2.3.6.5.4 Returns.
This operation does not return a value.

3.1.3.2.3.6.5.5 Exceptions/Errors.
The unregisterDevice operation shall raise the CF InvalidObjectReference exception when the
input parameter contains an invalid reference to a Device interface.

The unregisterDevice operation shall raise the UnregisterError exception when an internal error
exists which causes an unsuccessful unregistration.

3.1.3.2.3.6.6 uninstallApplication.
3.1.3.2.3.6.6.1 Brief Rationale.
The uninstallApplication operation is used to uninstall an ApplicationFactory in the
DomainManager’s Domain Profile.

An installer application typically invokes this operation when removing an ApplicationFactory
from the domain.

3.1.3.2.3.6.6.2 Synopsis.
void uninstallApplication(in string ApplicationId)raises (InvalidIdentifier,
ApplicationUninstallationError);

3.1.3.2.3.6.6.3 Behavior.
The ApplicationId parameter is the softwareassembly element id attribute of the
ApplicationFactory’s Software Assembly Descriptor file.

The uninstallApplication operation shall remove all files associated with the Application.

The uninstallApplication operation shall make the ApplicationFactory unavailable from the
DomainManager (i.e. its services no longer provided for the Application).

The uninstallApplication operation shall, upon successful uninstall of an Application, write an
ADMINISTRATIVE_EVENT log record to a DomainManager’s Log.

The uninstallApplication operation shall, upon unsuccessful uninstall of an Application, write a
FAILURE_ALARM log record to a DomainManager’s Log.

The uninstallApplication operation shall, upon unsuccessful uninstall of an Application, log a
FAILURE_ALARM log record to a DomainManager’s Log.

The uninstallApplication operation shall, upon successful uninstall of an application, send an
event to the Outgoing Domain Management event channel with event data consisting of a
DomainManagementObjectRemovedEventType. The event data will be populated as follows:

1. The producerId shall be the identifier attribute of the DomainManager.
2. The sourceId shall be the identifier attribute of the uninstalled ApplicationFactory.
3. The sourceName shall be the name attribute of the uninstalled ApplicationFactory.
4. The sourceCategory shall be APPLICATION_FACTORY.

MSRC-5000SCA
rev. 2.2

3-58

3.1.3.2.3.6.6.4 Returns.
This operation does not return a value.

3.1.3.2.3.6.6.5 Exceptions/Errors.
The uninstallApplication operation shall raise the InvalidIdentifier exception when the
ApplicationId is invalid.

The uninstallApplication operation shall raise the ApplicationUninstallationError exception
when an internal error causes unsuccessful uninstall of the application.

3.1.3.2.3.6.7 registerService.
3.1.3.2.3.6.7.1 Brief Rationale.
The registerService operation is used to register a service for a specific DeviceManager with the
DomainManager.
3.1.3.2.3.6.7.2 Synopsis.
void registerService(in Object registeringService, in DeviceManager
registeredDeviceMgr, in string name) raises (InvalidObjectReference,
DeviceManagerNotRegistered, RegisterError);

3.1.3.2.3.6.7.3 Behavior.
The registerService operation shall verify the input registeringService and registeredDeviceMgr
are valid object references.

The registerService operation shall verify the input registeredDeviceMgr has been previously
registered with the DomainManager.

The registerService operation shall add the registeringService’s object reference and the
registeringService’s name to the DomainManager, if the name for the type of service being
registered does not exist within the DomainManager. However, if the name of the registering
service is a duplicate of a registered service of the same type, then the new service shall not be
registered with the DomainManager.

The registerService operation shall associate the input registeringService parameter with the
input registeredDeviceMgr parameter in the DomainManager’s, when the registeredDeviceMgr
parameter indicates a DeviceManager registered with the DomainManager.

The registerService operation shall, upon successful service registration, establish any pending
connection requests for the registeringService. The registerService operation shall, upon
successful service registration, write an ADMINISTRATIVE_EVENT log record to a
DomainManager’s Log.

The registerService operation shall, upon unsuccessful service registration, write a
FAILURE_ALARM log record to a DomainManager’s Log.

The registerService operation shall, upon successful service registration, send an event to the
Outgoing Domain Management event channel with event data consisting of a
DomainManagementObjectAddedEventType. The event data will be populated as follows:

1. The producerId shall be the identifier attribute of the DomainManager.
2. The sourceId shall be the identifier attribute from the componentinstantiation element

associated with the registered service.

MSRC-5000SCA
rev. 2.2

3-59

3. The sourceName shall be the input name parameter for the registering service.
4. The sourceIOR shall be the registered service object reference.
5. The sourceCategory shall be SERVICE.

The following UML sequence diagram (Figure 3-18) illustrates the DomainManager's behavior
for the registerService operation.

 : Log:
DomainManager

OutGoing Domain Management
Event Channel

Device's Uses
Port : Port

 :
DeviceManager

1: registerService(in Object, in DeviceManager, in string)

6: writeRecords(in ProducerLogRecordSequence)

2: associate registeringService with
registeredDeviceManager in

DomainManager

3: add registeringService to DomainManager

4: connectPort(in Object, in string)

5: send DomainManagementObjectAddedEventType

MSRC-5000SCA
rev. 2.2

3-60

Figure 3-18. DomainManager Sequence Diagram for registerService Operation

3.1.3.2.3.6.7.4 Returns.
This operation does not return a value.

3.1.3.2.3.6.7.5 Exceptions/Errors.
The registerService operation shall raise a DeviceManagerNotRegistered exception when the
input registeredDeviceMgr parameter is not a nil reference and is not registered with the
DomainManager.

The registerService operation shall raise the CF InvalidObjectReference exception when input
parameters registeringService or registeredDeviceMgr contains an invalid reference.

The registerService operation shall raise the RegisterError exception when an internal error
exists which causes an unsuccessful registration.

3.1.3.2.3.6.8 unregisterService.
3.1.3.2.3.6.8.1 Brief Rationale.
The unregisterService operation is used to remove a service entry from the DomainManager for
a specific DeviceManager.

3.1.3.2.3.6.8.2 Synopsis.
void unregisterService(in Object unregisteringService, in string name) raises
(InvalidObjectReference, UnregisterError);

3.1.3.2.3.6.8.3 Behavior.
The unregisterService operation shall remove the unregisteringService entry specified by the
input name parameter from the DomainManager.

The unregisterService operation shall release (client-side CORBA release) the
unregisteringService from the DomainManager.

The unregisterService operation shall, upon the successful unregistration of a Service, write an
ADMINISTRATIVE_EVENT log record to a DomainManager’s Log.

The unregisterService operation shall, upon unsuccessful unregistration of a Service, write a
FAILURE_ALARM log record to a DomainManager’s Log.

The unregisterService operation shall, upon successful service unregistration, send an event to
the Outgoing Domain Management event channel with event data consisting of a
DomainManagementObjectRemovedEventType. The event data will be populated as follows:

1. The producerId shall be the identifier attribute of the DomainManager.
2. The sourceId shall be the ID attribute from the componentinstantiation element

associated with the unregistered service.
3. The sourceName shall be the input name parameter for the unregistering service.
4. The sourceCategory shall be SERVICE.

3.1.3.2.3.6.8.4 Returns.
This operation does not return a value.

MSRC-5000SCA
rev. 2.2

3-61

3.1.3.2.3.6.8.5 Exceptions/Errors.
The unregisterService operation shall raise the CF InvalidObjectReference exception when the
input parameter contains an invalid reference to a Service interface.

The unregisterService operation shall raise the UnregisterError exception when an internal error
exists which causes an unsuccessful unregistration.

3.1.3.2.3.6.9 registerWithEventChannel.
3.1.3.2.3.6.9.1 Brief Rationale.
The registerWithEventChannel operation is used to connect a consumer to a domain’s event
channel.

3.1.3.2.3.6.9.2 Synopsis.
void registerWithEventChannel(in Object registeringObject, in string
registeringId, in string eventChannelName) raises (InvalidObjectReference,
InvalidEventChannelName, AlreadyConnected);

3.1.3.2.3.6.9.3 Behavior.
The registerWithEventChannel operation shall connect the input registeringObject to an event
channel as specified by the input eventChannelName.

3.1.3.2.3.6.9.4 Returns.
This operation does not return a value.

3.1.3.2.3.6.9.5 Exceptions/Errors.
The registerWithEventChannel operation shall raise the CF InvalidObjectReference exception
when the input registeringObject parameter contains an invalid reference to a CosEventComm
PushConsumer interface.

The registerWithEventChannel operation shall raise the InvalidEventChannelName exception
when the input eventChannelName parameter contains an invalid event channel name (e.g,
"ODM_Channel").

The registerWithEventChannel operation shall raise AlreadyConnected exception when the input
parameter contains a connection to the event channel for the input registeringId parameter.

3.1.3.2.3.6.10 unregisterFromEventChannel.
3.1.3.2.3.6.10.1 Brief Rationale.
The unregisterFromEventChannel operation is used to disconnect a consumer from a domain’s
event channel.

3.1.3.2.3.6.10.2 Synopsis.
void unregisterFromEventChannel(in string unregisteringId, in string
 eventChannelName) raises (InvalidEventChannelName, NotConnected);

3.1.3.2.3.6.10.3 Behavior.
The unregisterFromEventChannel operation shall disconnect a registered component from the
event channel as identified by the input parameters.

MSRC-5000SCA
rev. 2.2

3-62

3.1.3.2.3.6.10.4 Returns.
This operation does not return a value.

3.1.3.2.3.6.10.5 Exceptions/Errors.
The unregisterFromEventChannel operation shall raise the InvalidEventChannelName exception
when the input eventChannelName parameter contains an invalid reference to an event channel
(e.g., "ODM_Channel").

The unregisterFromEventChannel operation shall raise the NotConnected exception when the
input parameter unregisteringId parameter is not connected to specified input event channel.

3.1.3.2.4 Device.
3.1.3.2.4.1 Description.
A Device is a type of Resource within the domain and has the requirements as stated in the
Resource interface. This interface defines additional capabilities and attributes for any logical
Device in the domain. A logical Device is a functional abstraction for a set (e.g., zero or more)
of hardware devices and provides the following attributes and operations:

1. Software Profile Attribute – This SPD XML profile defines the logical Device
capabilities (data/command uses and provides ports, configure and query properties,
capacity properties, status properties, etc.), which could be a subset of the hardware
device’s capabilities.

2. State Management & Status Attributes – This information describes the administrative,
usage, and operational states of the device.

3. Capacity Operations - In order to use a device, certain capacities (e.g., memory,
performance, etc.) must be obtained from the Device. The capacity properties will vary
among devices and are described in the Software Profile. A device may have multiple
allocatable capacities, each having its own unique capacity model.

3.1.3.2.4.2 UML.
The Device Interface UML is depicted in Figure 3-19.

MSRC-5000SCA
rev. 2.2

3-63

Device
usageState : UsageType
adminState : AdminType
operationalState : OperationalType
softwareProfile : string
label : string
compositeDevice : AggregateDevice

allocateCapacity(capacities : in Properties) : boolean
deallocateCapacity(capacities : in Properties) : void

<<Interface>>

uses

Resource
<<Interface>>

Properties
<<CORBATypedef>>

AggregateDevice
<<Interface>>

Figure 3-19. Device Interface UML

3.1.3.2.4.3 Types.
3.1.3.2.4.3.1 InvalidState.
The InvalidState exception indicates that the device is not capable of the behavior being
attempted due to the state the Device is in. An example of such behavior is allocateCapacity.
exception InvalidState{string msg;};

3.1.3.2.4.3.2 InvalidCapacity.
The InvalidCapacity exception returns the capacities that are not valid for this device.
exception InvalidCapacity{string msg; Properties capacities;};

MSRC-5000SCA
rev. 2.2

3-64

3.1.3.2.4.3.3 AdminType.
This is a CORBA IDL enumeration type that defines a Device's administrative states. The
administrative state indicates the permission to use or prohibition against using the Device.

enum AdminType
{

LOCKED,
SHUTTING_DOWN,
UNLOCKED

};

3.1.3.2.4.3.4 OperationalType.
This is a CORBA IDL enumeration type that defines a Device's operational states. The
operational state indicates whether or not the object is functioning.
enum OperationalType

{
ENABLED,
DISABLED

};

3.1.3.2.4.3.5 UsageType.
This is a CORBA IDL enumeration type that defines the Device’s usage states. The usage state
indicates which of the following states a Device is in:

• IDLE – not in use

• ACTIVE – in use, with capacity remaining for allocation, or

• BUSY – in use, with no capacity remaining for allocation
enum UsageType

{
IDLE,
ACTIVE,
BUSY

};

3.1.3.2.4.4 Attributes.
3.1.3.2.4.4.1 usageState.
The readonly usageState attribute shall contain the Device’s usage state (IDLE, ACTIVE, or
BUSY, see Figure 3-21). UsageState indicates whether or not a device is actively in use at a
specific instant, and if so, whether or not it has spare capacity for allocation at that instant.

Whenever the usageState attribute changes, the Device shall send an event to the Incoming
Domain Management event channel with event data consisting of a StateChangeEventType. The
event data will be populated as follows:

1. The producerId field shall be the identifier attribute of the Device.
2. The sourceId field shall be the identifier attribute of the Device.
3. The stateChangeCategory field shall be USAGE_STATE_EVENT.
4. The stateChangeFrom and stateChangeTo fields shall reflect the usageState attribute

value before and after the state change, respectively.

MSRC-5000SCA
rev. 2.2

3-65

readonly attribute UsageType usageState;

3.1.3.2.4.4.2 adminState.
The administrative state indicates the permission to use or prohibition against using the device.
The adminState attribute shall contain the device’s admin state value. The adminState attribute
shall only allow the setting of LOCKED and UNLOCKED values, where setting “LOCKED” is
only effective when the adminState attribute value is UNLOCKED, and setting “UNLOCKED”
is only effective when the adminState attribute value is LOCKED or SHUTTING_DOWN.
Illegal state transitions commands are ignored.

The adminState attribute, upon being commanded to be LOCKED, shall transition from the
UNLOCKED to the SHUTTING_DOWN state and set the adminState to LOCKED for its entire
aggregation of Devices (if it has any). The adminState shall then transition to the LOCKED state
when the Device’s usageState is IDLE and its entire aggregation of Devices are LOCKED. Refer
to Figure 3-19 for an illustration of the above state behavior.

Whenever the adminState attribute changes, the Device shall send an event to the Incoming
Domain Management event channel with event data consisting of a StateChangeEventType. The
event data will be populated as follows:

1. The producerId field shall be the identifier attribute of the Device.
2. The sourceId field shall be the identifier attribute of the Device.
3. The stateChangeCategory field shall be ADMINISTRATIVE_STATE_EVENT.
4. The stateChangeFrom and stateChangeTo fields shall reflect the adminState attribute

value before and after the state change, respectively.

attribute AdminType adminState;

MSRC-5000SCA
rev. 2.2

3-66

UNLOCKED

SHUTTING_DOWN

LOCKED

adminState(
UNLOCKED)

adminState(UNLOCKED)

Usage State = IDLE and
its devices' adminState =

LOCKED

adminState(
LOCKED)

upon startup

Figure 3-20. State Transition Diagram for adminState

3.1.3.2.4.4.3 operationalState.
The readonly operationalState attribute shall contain the device’s operational state (ENABLED
or DISABLED). The operational state indicates whether or not the device is functioning.

Whenever the operationalState attribute changes, the Device shall send an event to the Incoming
Domain Management event channel with event data consisting of a StateChangeEventType. The
event data will be populated as follows:

1. The producerId field shall be the identifier attribute of the Device.
2. The sourceId field shall be the identifier attribute of the Device.
3. The stateChangeCategory field shall be OPERATIONAL_STATE_EVENT.
4. The stateChangeFrom and stateChangeTo fields shall reflect the operationalState

attribute value before and after the state change, respectively.

readonly attribute OperationalType operationalState;

3.1.3.2.4.4.4 softwareProfile.
The softwareProfile attribute is the XML software description for this logical Device.

The readonly softwareProfile attribute shall contain either a profile DTD element with a file
reference to the SPD profile file or the XML for the SPD profile. Files referenced within the
softwareProfile are obtained via the FileManager.

MSRC-5000SCA
rev. 2.2

3-67

readonly attribute string softwareProfile;

3.1.3.2.4.4.5 label.
The readonly label attribute shall contain the Device’s label. The label attribute is the
meaningful name given to a Device. The attribute could convey location information within the
system (e.g., audio1, serial1, etc.).
readonly attribute string label;

3.1.3.2.4.4.6 compositeDevice.
The readonly compositeDevice attribute shall contain the object reference of the
aggregateDevice, which this Device is associated with or a nil CORBA object reference if no
association exists.
readonly attribute AggregateDevice compositeDevice;

3.1.3.2.4.5 Operations.
3.1.3.2.4.5.1 allocateCapacity.
3.1.3.2.4.5.1.1 Brief Rationale.
The allocateCapacity operation provides the mechanism to request and allocate capacity from
the Device.

3.1.3.2.4.5.1.2 Synopsis.
boolean allocateCapacity(in Properties capacities) raises (InvalidCapacity,
InvalidState);

3.1.3.2.4.5.1.3 Behavior.
The allocateCapacity operation shall reduce the current capacities of the Device based upon the
input capacities parameter, when the Device’s adminState is UNLOCKED, Device’s
operationalState is ENABLED, and Device’s usageState is not BUSY.
The allocateCapacity operation shall set the Device’s usageState attribute to BUSY, when the
Device determines that it is not possible to allocate any further capacity. The allocateCapacity
operation shall set the usageState attribute to ACTIVE, when capacity is being used and any
capacity is still available for allocation (reference Figure 3-21).

3.1.3.2.4.5.1.4 Returns.
The allocateCapacity operation shall return “True”, if the capacities have been allocated, or
“False”, if not allocated.

3.1.3.2.4.5.1.5 Exceptions/Errors.
The allocateCapacity operation shall raise the InvalidCapacity exception, when the capacities are
invalid or the capacity values are the wrong type or ID.

The allocateCapacity operation shall raise the InvalidState exception, when the Device’s
adminState is not UNLOCKED or operationalState is DISABLED.

MSRC-5000SCA
rev. 2.2

3-68

3.1.3.2.4.5.2 deallocateCapacity.
3.1.3.2.4.5.2.1 Brief Rationale.
The deallocateCapacity operation provides the mechanism to return capacities back to the
Device, making them available to other users.

3.1.3.2.4.5.2.2 Synopsis.
void deallocateCapacity(in Properties capacities) raises (InvalidCapacity,
InvalidState);

3.1.3.2.4.5.2.3 Behavior.
The deallocateCapacity operation shall adjust the current capacities of the Device based upon the
input capacities parameter.

The deallocateCapacity operation shall set the usageState attribute to ACTIVE when, after
adjusting capacities, any of the Device’s capacities are still being used.

The deallocateCapacity operation shall set the usageState attribute to IDLE when, after adjusting
capacities, none of the Device’s capacities are still being used.

The deallocateCapacity operation shall set the adminState attribute to LOCKED as specified in
3.1.3.2.4.4.2.

IDLE

ACTIVE

BUSY

upon startup

no more capacities
can be allocated

all capacit ies
are unused

capacities in use
and available

no more
capacities can

be allocated

all capacities
are unused

capacities in
use and
available

 Figure 3-21. State Transition Diagram for allocateCapacity and deallocateCapacity

3.1.3.2.4.5.2.4 Returns.
This operation does not return any value.

MSRC-5000SCA
rev. 2.2

3-69

3.1.3.2.4.5.2.5 Exceptions/Errors.
The deallocateCapacity operation shall raise the InvalidCapacity exception, when the capacity
ID is invalid or the capacity value is the wrong type. The InvalidCapacity exception will state
the reason for the exception.

The deallocateCapacity operation shall raise the InvalidState exception, when the Device’s
adminState is LOCKED or operationalState is DISABLED.

3.1.3.2.4.5.3 releaseObject.
3.1.3.2.4.5.3.1 Description.
This section describes additional release behavior for a logical Device.

3.1.3.2.4.5.3.2 Synopsis.
void releaseObject() raises (ReleaseError);

3.1.3.2.4.5.3.3 Behavior.
The following behavior is in addition to the LifeCycle releaseObject operation behavior.

The releaseObject operation shall call the releaseObject operation on all of the Device’s
aggregated Devices (i.e., those Devices that are contained within the AggregateDevice’s devices
attribute).

The releaseObject operation shall transition the Device’s adminState to SHUTTING_DOWN
state, when the Device’s adminState is UNLOCKED.

The releaseObject operation shall cause the Device to be unavailable (i.e., released from the
CORBA environment, and its logical Device’s process terminated on the OS when applicable),
when the Device’s adminState transitions to LOCKED, meaning its aggregated Devices have
been removed and the Device’s usageState is IDLE.

The releaseObject operation shall cause the removal of its Device from the Device’s
compositeDevice.

The releaseObject operation shall unregister its Device from its DeviceManager.
The following four figures (3-22, 3-23, 3-24, and 3-25) depict different release scenarios
depending on the type of Device and the state the Device is in.

MSRC-5000SCA
rev. 2.2

3-70

 : Comm User Aggregated Device
: Device

Composite Device :
AggregateDevice

 :
DomainManager

CORBA ORB Operating
System

 :
DeviceManager

Aggregated Device
Process/Thread

1: releaseObject()

2: removeDevice(in Device)

5: deactivate Device servant object from ORB

6: terminate Device thread/process from OS

After the deactivation of the Device Servant from
the ORB, the process/thread can be terminated.

For this scenario, the aggregated Device's
adminState equals LOCKED and the Device has
been reques ted to terminate. How a Device
indicates to its thread/process to terminate is
implementation speci fic.

3: unregisterDevice(in Device) 4: unregisterDevice(in Device)

Figure 3-22. Release Aggregated Device Scenario

 : Comm User Compos ite Device
: Device

Aggregated
Device : Device

 :
DomainManager

CORBA ORB Operating
System

Composite Device
Process/Thread

 :
DeviceManager

Aggregated Device
Processes/Threads

Released Composite Device :
AggregateDevice

1: releaseObject()

2: releaseObject()
3: removeDevice(in Device)

10: deact ivate the Device servant object from the ORB

6: deactivate the Device servant object from the ORB

7: terminate Device thread/process from OS

For this scenario, al l Devices '
adminState equals LOCKED.

4: unregisterDevice(in Device) 5: unregisterDevice(in Device)Step 2 is done for each
Hosted On Device

8: unregisterDevice(in Device)
9: unregisterDevice(in Device)

11: terminate Device thread/process from OS

How a Device informs i ts process to
terminate is implementation specific.

Figure 3-23. Release Composite Device Scenario

MSRC-5000SCA
rev. 2.2

3-71

 : Comm User Composite & Aggregated
Device : Device

Aggregated
Devices : Device

Composite Device :
AggregateDevice

 :
DomainManager

Operating
System

Composite & Aggregated
Device Process/Thread

 : DeviceManagerAggregated Device
Processes/Threads

CORBA ORBReleased Composite & Aggregated
Device : AggregateDevice

1: releaseObject()

2: releaseObject()

8: removeDevice(in Device)

9: unregisterDevice(in Device)

3: removeDevice(in Device)

6: deactivate Device servant object from ORB

12: deactivate Device servant object from ORB

7: terminate Device thread/process from OS

For this scenario, all Devices'
adminState equals LOCKED.

4: unregisterDevice(in Device) 5: unregisterDevice(in Device)

10: unregisterDevice(in Device) 11: unregisterDevice(in Device)

Step 2 is done for each
Hosted On Device

How a Device informs its process to
terminate is implementation specific.

13: terminate Device thread/process from OS

Figure 3-24. Release Composite & Aggregated Device Scenario

 : Comm User Composite Device
: Device

Aggregated
Device : Device

In this scenario, no device processes are terminated or device
objects deactivated from the ORB since the Devices'
adminState equals SHUTTING_DOWN. A Device is in
SHUTTING_DOWN state when the usageState is not IDLE.

1: releaseObject()

2: releaseObject()

Figure 3-25. Release Composite Device in SHUTTING_DOWN State Scenario

MSRC-5000SCA
rev. 2.2

3-72

3.1.3.2.4.5.3.4 Returns.
The releaseObject operation does not return a value.

3.1.3.2.4.5.3.5 Exceptions/Errors.
The releaseObject operation shall raise the ReleaseError exception when releaseObject is not
successful in releasing a logical Device due to internal processing errors that occurred within the
Device being released.

3.1.3.2.5 LoadableDevice.
3.1.3.2.5.1 Description.
This interface extends the Device interface by adding software loading and unloading behavior to
a Device.

3.1.3.2.5.2 UML.
The LoadableDevice Interface UML is depicted in Figure 3-26 below.

MSRC-5000SCA
rev. 2.2

3-73

LoadableDevice

load(fs : in FileSystem, fileName : in string, loadKind : in LoadType) : void
unload(fileName : in string) : void

<<Interface>>

FileSystem
<<Interface>>

InvalidFileName
<<CORBAException>>

Device
usageState : UsageType
adminState : AdminType
operationalState : OperationalType
softwareProfile : string
label : string
compositeDevice : AggregateDevice

allocateCapacity()
deallocateCapacity()

<<Interface>>

Figure 3-26. LoadableDevice Interface UML

3.1.3.2.5.3 Types.
3.1.3.2.5.3.1 LoadType.
The LoadType defines the type of load to be performed. The load types are in accordance with
the code element within the softpkg element’s implementation element, which is defined in
Appendix D.2.1.
enum LoadType

{
KERNEL_MODULE,
DRIVER,
SHARED_LIBRARY,

MSRC-5000SCA
rev. 2.2

3-74

EXECUTABLE

 };

3.1.3.2.5.3.2 InvalidLoadKind.
The InvalidLoadKind exception indicates that the Device is unable to load the type of file
designated by the loadKind parameter.
exception InvalidLoadKind{};

3.1.3.2.5.3.3 LoadFail.
The LoadFail exception indicates that the Load operation failed due to device dependent reasons.
The LoadFail exception indicates that an error occurred during an attempt to load the device. The
error number shall indicate an ErrorNumberType value (e.g. EACCES, EAGAIN, EBADF,
EINVAL, EMFILE, ENAMETOOLONG, ENOENT, ENOMEM, ENOSPC, ENOTDIR). The
message is component-dependent, providing additional information describing the reason for the
error.
exception LoadFail{ ErrorNumberType errorNumber; string msg; };

3.1.3.2.5.4 Attributes.
N/A

3.1.3.2.5.5 Operations.
3.1.3.2.5.5.1 load.
3.1.3.2.5.5.1.1 Brief Rationale.
The load operation provides the mechanism for loading software on a specific device. The
loaded software may be subsequently executed on the Device, if the Device is an
ExecutableDevice.

3.1.3.2.5.5.1.2 Synopsis.
void load(in FileSystem fs, in string fileName, in LoadType loadKind)

raises (InvalidState, InvalidLoadKind, InvalidFileName, LoadFail);

3.1.3.2.5.5.1.3 Behavior.
The load operation shall load a file on the specified device based upon the input loadKind and
fileName parameters using the input FileSystem parameter to retrieve the file.

The load operation shall support the load types as stated in the Device’s software profile
LoadType allocation properties.

The load operation shall keep track of the number of times a file has been successfully loaded.

3.1.3.2.5.5.1.4 Returns.
This operation does not return any value.

3.1.3.2.5.5.1.5 Exceptions/Errors.
The load operation shall raise the InvalidState exception when the Device’s adminState is not
UNLOCKED or operationalState is DISABLED.

The load operation shall raise the InvalidLoadKind exception when the input loadKind
parameter is not supported.

MSRC-5000SCA
rev. 2.2

3-75

The load operation shall raise the InvalidFileName exception when the file designated by the
input filename parameter cannot be found.

The load operation shall raise the LoadFail exception when an attempt to load the device is
unsuccessful.

3.1.3.2.5.5.2 unload.
3.1.3.2.5.5.2.1 Brief Rationale.
The unload operation provides the mechanism to unload software that is currently loaded.

3.1.3.2.5.5.2.2 Synopsis.
void unload(in string fileName) raises (InvalidState, InvalidFileName);

3.1.3.2.5.5.2.3 Behavior.
The unload operation shall decrement the load count for the input filename parameter by one.
The unload operation shall unload the application software on the device based on the input
fileName parameter, when the file’s load count equals zero.

3.1.3.2.5.5.2.4 Returns.
This operation does not return a value.

3.1.3.2.5.5.2.5 Exceptions/Errors.
The unload operation shall raise the InvalidState exception when the Device’s adminState is
LOCKED or its operationalState is DISABLED.

The unload operation shall raise the InvalidFileName exception when the file designated by the
input filename parameter cannot be found.

3.1.3.2.6 ExecutableDevice.
3.1.3.2.6.1 Description.
This interface extends the LoadableDevice interface by adding execute and terminate behavior to
a Device.

3.1.3.2.6.2 UML.
The ExecutableDevice Interface UML is depicted in Figure 3-27.

MSRC-5000SCA
rev. 2.2

3-76

LoadableDevice

load()
unload()

<<Interface>>

ExecutableDevice

execute(name : in string, options : in Properties, parameters : in Properties) : ProcessID_Type
terminate(processId : in ProcessID_Type) : void

<<Interface>>

InvalidFileName
msg : string

<<CORBAException>>
Properties

<<CORBATypedef>>

Figure 3-27. ExecutableDevice Interface UML

3.1.3.2.6.3 Types.
3.1.3.2.6.3.1 InvalidProcess.
The InvalidProcess exception indicates that a process, as identified by the processiD parameter,
does not exist on this device. The error number shall indicate an ErrorNumberType value (e.g.,
ESRCH, EPERM, EINVAL). The message is component-dependent, providing additional
information describing the reason for the error.
exception InvalidProcess{ ErrorNumberType errorNumber; string msg; };

3.1.3.2.6.3.2 InvalidFunction.
The InvalidFunction exception indicates that a function, as identified by the input name
parameter, hasn’t been loaded on this device.
exception InvalidFunction {};

3.1.3.2.6.3.3 ProcessID_Type.
This type defines a process number within the system. Process number is unique to the
Processor operating system that created the process.
typedef unsigned long ProcessID_Type;

MSRC-5000SCA
rev. 2.2

3-77

3.1.3.2.6.3.4 InvalidParameters.
The InvalidParameters exception indicates the input parameters are invalid on the execute
operation. The InvalidParameters exception is raised when there are invalid execute parameters.
Each parameter's ID and value must be a valid string type. The invalidParms is a list of invalid
parameters specified in the execute operation.
exception InvalidParameters{ Properties invalidParms;};

3.1.3.2.6.3.5 InvalidOptions.
The InvalidOptions exception indicates the input options are invalid on the execute operation.
The invalidOpts is a list of invalid options specified in the execute operation.
exception InvalidOptions{ Properties invalidOpts;};

3.1.3.2.6.3.6 STACK_SIZE_ID.
The STACK_SIZE_ID is the identifier for the ExecutableDevice’s execute options parameter.
The value for a stack size shall be an unsigned long.
Constant string STACK_SIZE_ID = “STACK_SIZE”;

3.1.3.2.6.3.7 PRIORITY_ID.
The PRIORITY_ID is the identifier for the ExecutableDevice’s execute options parameters. The
value for a priority shall be an unsigned long.
Constant string PRIORITY_ID = “PRIORITY”;

3.1.3.2.6.3.8 ExecuteFail.
The ExecuteFail exception indicates that the Execute operation failed due to device dependent
reasons. The ExecuteFail exception indicates that an error occurred during an attempt to invoke
the execute function on the device. The error number shall indicate an ErrorNumberType value
(e.g. EACCES, EBADF, EINVAL, EIO, EMFILE, ENAMETOOLONG, ENOENT, ENOMEM,
ENOTDIR). The message is component-dependent, providing additional information describing
the reason for the error.
exception ExecuteFail{ ErrorNumberType errorNumber; string msg; };

3.1.3.2.6.4 Attributes.
N/A.

3.1.3.2.6.5 Operations.
3.1.3.2.6.5.1 execute.
3.1.3.2.6.5.1.1 Brief Rationale.
The execute operation provides the mechanism for starting up and executing a software
process/thread on a device.

3.1.3.2.6.5.1.2 Synopsis.
ProcessID_Type execute(in string name, in Properties options, in Properties
parameters) raises (InvalidState, InvalidFunction, InvalidParameters,
InvalidOptions, InvalidFileName, ExecuteFail);

MSRC-5000SCA
rev. 2.2

3-78

3.1.3.2.6.5.1.3 Behavior.
The execute operation shall execute the function or file identified by the input name parameter
using the input parameters and options parameters. Whether the input name parameter is a
function or a file name is device-implementation-specific.

The execute operation shall convert the input parameters (id/value string pairs) parameter to the
standard argv of the POSIX exec family of functions, where argv(0) is the function name. The
execute operation shall map the input parameters parameter to argv starting at index 1 as follows,
argv (1) maps to input parameters (0) id and argv (2) maps to input parameters (0) value and so
forth. The execute operation passes argv through the operating system “execute” function.

The execute operation input options parameters are STACK_SIZE_ID and PRIORITY_ID. The
execute operation shall use these options, when specified, to set the operating system’s
process/thread stack size and priority, for the executable image of the given input name
parameter.

3.1.3.2.6.5.1.4 Returns.
The execute operation shall return a unique processID for the process that it created or a
processID of minus 1 (-1) when a process is not created.

3.1.3.2.6.5.1.5 Exceptions/Errors.
The execute operation shall raise the InvalidState exception when the Device’s adminState is not
UNLOCKED or operationalState is DISABLED.

The execute operation shall raise the InvalidFunction exception when the function indicated by
the input name parameter does not exist for the Device.

The execute operation shall raise the InvalidFileName exception when the file name indicated by
the input name parameter does not exist for the Device.

The execute operation shall raise the InvalidParameters exception when the input parameters
parameter item ID or value are not string types.

The execute operation shall raise the InvalidOptions exception when the input options parameter
does not comply with sections 3.1.3.2.6.3.5 STACK_SIZE_ID and 3.1.3.2.6.3.6 PRIORITY_ID.

The execute operation shall raise the ExecuteFail exception when the operating system “execute”
function for the device is not successful.

3.1.3.2.6.5.2 terminate.
3.1.3.2.6.5.2.1 Brief Rationale.
The terminate operation provides the mechanism for terminating the execution of a
process/thread on a specific device that was started up with the execute operation.

3.1.3.2.6.5.2.2 Synopsis.
void terminate(in ProcessID_Type processId) raise (InvalidProcess,
InvalidState);

3.1.3.2.6.5.2.3 Behavior.
The terminate operation shall terminate the execution of the process/thread designated by the
processId input parameter on the Device.

MSRC-5000SCA
rev. 2.2

3-79

3.1.3.2.6.5.2.4 Returns.
This operation does not return a value.

3.1.3.2.6.5.2.5 Exceptions/Errors.
The terminate operation shall raise the InvalidState exception when the Device’s adminState is
LOCKED or operationalState is DISABLED.

The terminate operation shall raise the InvalidProcess exception when the processId does not
exist for the Device.

3.1.3.2.7 AggregateDevice.
3.1.3.2.7.1 Description.
The AggregateDevice interface provides aggregate behavior that can be used to add and remove
Devices from an aggregate Device. This interface can be provided via inheritance or as a
“provides port” for any Device that is capable of an aggregate relationship. Aggregated Devices
use this interface to add or remove themselves from composite Devices when being created or
torn-down.

3.1.3.2.7.2 UML.
The AggregateDevice Interface UML is depicted in Figure 3-28.

AggregateDevice
devices : DeviceSequence

addDevice(associatedDevice : in Device) : void
removeDevice(associatedDevice : in Device) : void

<<Interface>>

Device
<<Interface>>

DeviceSequence
<<CORBATypedef>>

InvalidObjectReference
msg : string

<<CORBAException>>

Figure 3-28. AggregateDevice Interface UML

3.1.3.2.7.3 Types.
N/A.

MSRC-5000SCA
rev. 2.2

3-80

3.1.3.2.7.4 Attributes.
3.1.3.2.7.4.1 devices.
The readonly devices attribute shall contain a list of devices that have been added to this Device
or a sequence length of zero if the Device has no aggregation relationships with other Devices.
readonly attribute DeviceSequence devices;

3.1.3.2.7.5 Operations.
3.1.3.2.7.5.1 addDevice.
3.1.3.2.7.5.1.1 Brief Rationale.
The addDevice operation provides the mechanism to associate a Device with another Device.
When a Device changes state or it is being torn down, its associated Devices are affected.

3.1.3.2.7.5.1.2 Synopsis.
void addDevice(in Device associatedDevice) raises (InvalidObjectReference);

3.1.3.2.7.5.1.3 Behavior.
The addDevice operation shall add the input associatedDevice parameter to the
AggregateDevice’s devices attribute when the associatedDevice does not exist in the devices
attribute. The associatedDevice is ignored when duplicated.

The addDevice operation shall write a FAILURE_ALARM log record, upon unsuccessful adding
of an associatedDevice to the AggregateDevice’s devices attribute.

3.1.3.2.7.5.1.4 Returns.
This operation does not return any value.

3.1.3.2.7.5.1.5 Exceptions/Errors.
The addDevice operation shall raise the CF InvalidObjectReference when the input
associatedDevice is a nil CORBA object reference.

3.1.3.2.7.5.2 removeDevice.
3.1.3.2.7.5.2.1 Brief Rationale.
The removeDevice operation provides the mechanism to disassociate a Device from another
Device.

3.1.3.2.7.5.2.2 Synopsis.
void removeDevice(in Device associatedDevice) raises (InvalidObjectReference
);

3.1.3.2.7.5.2.3 Behavior.
The removeDevice operation shall remove the input associatedDevice parameter from the
AggregateDevice’s devices attribute.

The removeDevice operation shall write a FAILURE_ALARM log record, upon unsuccessful
removal of the associatedDevice from the AggregateDevice’s devices attribute.

MSRC-5000SCA
rev. 2.2

3-81

3.1.3.2.7.5.2.4 Returns.
This operation does not return any value.

3.1.3.2.7.5.2.5 Exceptions/Errors.
The removeDevice operation shall raise the CF InvalidObjectReference when the input
associatedDevice is a nil CORBA object reference or does not exist in the AggregateDevice’s
devices attribute.

3.1.3.2.8 DeviceManager.
3.1.3.2.8.1 Description.
The DeviceManager interface is used to manage a set of logical Devices and services. The
interface for a DeviceManager is based upon its attributes, which are:

1. Device Configuration Profile - a mapping of physical device locations to meaningful
labels (e.g., audio1, serial1, etc.), along with the Devices and services to be deployed.

2. File System - the FileSystem associated with this DeviceManager.

3. Device Manager Identifier - the instance-unique identifier for this DeviceManager.

4. Device Manager Label - the meaningful name given to this DeviceManager.

5. Registered Devices - a list of Devices that have registered with this DeviceManager.
6. Registered Services - a list of Services that have registered with this DeviceManager

MSRC-5000SCA
rev. 2.2

3-82

3.1.3.2.8.2 UML.

uses

FileSystem
<<Interface>>

DeviceManager
deviceConfigurationProfile : string
fileSys : FileSystem
identifier : string
label : string
registeredDevices : DeviceSequence
registeredServices : ServiceSequence

registerDevice(registeringDevice : in Device) : void
unregisterDevice(registeredDevice : in Device) : void
shutdown() : void
registerService(registeringService : in Object, name : in string) : void
unregisterService(registeredService : in Object, name : in string) : void
getComponentImplementationId(componentInstantiat ionId : in string) : st ring

<<Interface>>

DeviceSequence
<<CORBATypedef>>

Device
<<Interface>>

InvalidObjec tReference
msg : string

<<CORBAException>>

PropertySet

configure()
query()

<<Interface>>

PortSupplier

getPort()

<<Interface>>

Figure 3-29. DeviceManager UML

3.1.3.2.8.3 Types.
This section describes the types defined in the interface DeviceManager.

3.1.3.2.8.3.1 ServiceType.
This structure provides the object reference and name of services that have registered with the
DeviceManager.
struct ServiceType{

Object serviceObject;
string serviceName;

};

MSRC-5000SCA
rev. 2.2

3-83

3.1.3.2.8.3.2 ServiceSequenceType.
This type provides an unbounded sequence of ServiceType structures for services that have
registered with the DeviceManager.
typedef sequence <ServiceType> ServiceSequence;

3.1.3.2.8.4 Attributes.
3.1.3.2.8.4.1 identifier.
The readonly identifier attribute shall contain the instance-unique identifier for a
DeviceManager. The identifier shall be identical to the deviceconfiguration element id attribute
of the DeviceManager’s Device Configuration Descriptor (DCD) file.
readonly attribute string identifier;

3.1.3.2.8.4.2 label.
The readonly label attribute shall contain the DeviceManager’s label. The label attribute is the
meaningful name given to a DeviceManager.
readonly attribute string label;

3.1.3.2.8.4.3 fileSys.
The readonly fileSys attribute shall contain the FileSystem associated with this DeviceManager
or a nil CORBA object reference if no FileSystem is associated with this DeviceManager.
readonly attribute FileSystem fileSys;

3.1.3.2.8.4.4 deviceConfigurationProfile.
The readonly deviceConfigurationProfile attribute contains the DeviceManager’s profile.

The readonly deviceConfigurationProfile attribute shall contain either a profile element with a
file reference to the DeviceManager’s Device Configuration Descriptor (DCD) profile or the
XML for the DeviceManager’s DCD profile. Files referenced within the profile are obtained
from a FileSystem.
readonly attribute string deviceConfigurationProfile;

3.1.3.2.8.4.5 registeredDevices.
The readonly registeredDevices attribute shall contain a list of Devices that have registered with
this DeviceManager or a sequence length of zero if no Devices have registered with the
DeviceManager.
readonly attribute DeviceSequence registeredDevices;

3.1.3.2.8.4.6 registeredServices.
The readonly registeredServices attribute shall contain a list of Services that have registered with
this DeviceManager or a sequence length of zero if no Services have registered with the
DeviceManager.
readonly attribute ServiceSequence registeredServices;

MSRC-5000SCA
rev. 2.2

3-84

3.1.3.2.8.5 General Behavior.
The DeviceManager upon start up shall register itself with a DomainManager. This requirement
allows the system to be developed where at a minimum only the DomainManager’s component
reference needs to be known. A DeviceManager shall use the DeviceManager’s
deviceConfigurationProfile attribute for determining:

1. Services to be deployed for this DeviceManager (for example, log(s)),

2. Devices to be created for this DeviceManager (when the DCD deployondevice
element is not specified then the DCD componentinstantiation element is deployed on
the same hardware device as the DeviceManager),

3. Devices to be deployed on (executing on) another Device,

4. Devices to be aggregated to another Device,

5. Mount point names for FileSystems,

6. The DCD’s id attribute for the DeviceManager’s identifier attribute value, and

7. The DCD’s name attribute for the DeviceManager’s label attribute value.

The DeviceManager shall create FileSystem components implementing the FileSystem interface
for each OS file system. If multiple FileSystems are to be created, the DeviceManager shall
mount created FileSystems to a FileManager component (widened to a FileSystem through the
FileSys attribute). Each mounted FileSystem name must be unique within the DeviceManager.

The DeviceManager shall supply execute operation parameters (IDs and format values) for a
Device consisting of:

A. DeviceManager IOR – The ID is “DEVICE_MGR_IOR” and the value is a string that
is the DeviceManager stringified IOR.

B. Profile Name – The ID is “PROFILE_NAME” and the value is a CORBA string that
is the full mounted file system file path name.

C. Device Identifier – The ID is “DEVICE_ID” and the value is a string that corresponds
to the DCD componentinstantiation id attribute.

D. Device Label – The ID is “DEVICE_LABEL” and the value is a string that
corresponds to the DCD componentinstantiation usage element. This parameter is
only used when the DCD componentinstantiation usage element is specified.

E. Composite Device IOR - The ID is “Composite_DEVICE_IOR” and the value is a
string that is an AggregateDevice stringified IOR. This parameter is only used when
the DCD componentinstantiation element is a composite part of another
componentinstantiation element.

F. The execute (“execparam”) properties as specified in the DCD for a
componentinstantiation element. The DeviceManager shall pass the
componentinstantiation element “execparam” properties that have values as

MSRC-5000SCA
rev. 2.2

3-85

parameters. The DeviceManager shall pass “execparam” parameters’ IDs and values
as string values.

The DeviceManager shall use the componentinstantiation element’s SPD implementation code’s
stacksize and priority elements, when specified, for the execute options parameters.

The DeviceManager shall initialize and configure logical Devices that are started by the
DeviceManager after they have registered with the DeviceManager. The DeviceManager shall
configure a DCD’s componentinstantiation element provided the componentinstantiation element
has “configure” readwrite or writeonly properties with values. Figure 3-30 depicts a
DeviceManager startup scenario. If a Service is deployed by the DeviceManager, the
DeviceManager shall supply execute operation parameters (IDs and format values) consisting of:

a. DeviceManager IOR – The ID is “DEVICE_MGR_IOR” and the value is a string that
is the DeviceManager stringified IOR.

b. Service Name – The ID is “SERVICE_NAME” and the value is a string that
corresponds to the DCD componentinstantiation usagename element.

MSRC-5000SCA
rev. 2.2

3-86

Figure 3-30. DeviceManager Startup Scenario

3.1.3.2.8.6 Operations.
3.1.3.2.8.6.1 registerDevice.
3.1.3.2.8.6.1.1 Brief Rationale.
The registerDevice operation provides the mechanism to register a Device with a
DeviceManager.

3.1.3.2.8.6.1.2 Synopsis.
void registerDevice(in Device registeringDevice) raises (
InvalidObjectReference);

3.1.3.2.8.6.1.3 Behavior.
The registerDevice operation shall add the input registeringDevice to the DeviceManager’s
registeredDevices attribute when the input registeringDevice does not already exist in the
registeredDevices attribute. The registeringDevice is ignored when duplicated.

The registerDevice operation shall register the registeringDevice with the DomainManager when
the DeviceManager has already registered to the DomainManager and the registeringDevice has
been successfully added to the DeviceManager’s registeredDevices attribute.

Log : Device :
DeviceManager

Composite Device :
AggregateDevice

 :
DomainManager

XML ParserNode Boot Up

11: registerDeviceManager(in DeviceManager)

8: registerDevice(in Device)

10: configure(in Properties)

1: create

6: launch

7: addDevice(in Device)

Device Executable Parameters, Device MGR
IOR, Composite Device IOR, Identifier, Label,
Software Profile, User-Defined. Step 6 thru 9 is
done for each Device in the DCD file.

3: Parse DCD and SPD files

This step is optional, if
no relationship to an
Aggregated Device

2: create FileSystem

9: initialize()

4: launch

5: registerService(in Object, in String)

Log Executable
Parameters, Device
MGR IOR, Log Name

MSRC-5000SCA
rev. 2.2

3-87

The registerDevice operation shall write a FAILURE_ALARM log record to a
DomainManager’s Log, upon unsuccessful registration of a Device to the DeviceManager’s
registeredDevices.

3.1.3.2.8.6.1.4 Returns.
This operation does not return any value.

3.1.3.2.8.6.1.5 Exceptions/Errors.
The registerDevice operation shall raise the CF InvalidObjectReference when the input
registeringDevice is a nil CORBA object reference.

3.1.3.2.8.6.2 unregisterDevice.
3.1.3.2.8.6.2.1 Brief Rationale.
The unregisterDevice operation unregisters a Device from a DeviceManager.

3.1.3.2.8.6.2.2 Synopsis.
void unregisterDevice(in Device registeredDevice) raises (
InvalidObjectReference);

3.1.3.2.8.6.2.3 Behavior.
The unregisterDevice operation shall remove the input registeredDevice from the
DeviceManager’s registeredDevices attribute. The unregisterDevice operation shall unregister
the input registeredDevice from the DomainManager when the input registeredDevice is
registered with the DeviceManager and the DeviceManager is not shutting down.

The unregisterDevice operation shall write a FAILURE_ALARM log record, when it cannot
successfully remove a registeredDevice from the DeviceManager’s registeredDevices.

3.1.3.2.8.6.2.4 Returns.
This operation does not return any value.

3.1.3.2.8.6.2.5 Exceptions/Errors.
The unregisterDevice operation shall raise the CF InvalidObjectReference when the input
registeredDevice is a nil CORBA object reference or does not exist in the DeviceManager’s
registeredDevices attribute.

3.1.3.2.8.6.3 registerService.
3.1.3.2.8.6.3.1 Brief Rationale.
The registerService operation provides the mechanism to register a Service with a
DeviceManager.

3.1.3.2.8.6.3.2 Synopsis.
void registerService(in Object registeringService, in string name) raises (
InvalidObjectReference);

3.1.3.2.8.6.3.3 Behavior.
The registerService operation shall add the input registeringService to the DeviceManager’s
registeredServices attribute when the input registeringService does not already exist in the
registeredServices attribute. The registeringService is ignored when duplicated.

MSRC-5000SCA
rev. 2.2

3-88

The registerService operation shall register the registeringService with the DomainManager
when the DeviceManager has already registered to the DomainManager and the
registeringService has been successfully added to the DeviceManager’s registeredServices
attribute.

The registerService operation shall write a FAILURE_ALARM log record, upon unsuccessful
registration of a Service to the DeviceManager’s registeredServices.

3.1.3.2.8.6.3.4 Returns.
This operation does not return any value.

3.1.3.2.8.6.3.5 Exceptions/Errors.
The registerService operation shall raise the CF InvalidObjectReference exception when the
input registeringService is a nil CORBA object reference.

3.1.3.2.8.6.4 unregisterService.
3.1.3.2.8.6.4.1 Brief Rationale.
The unregisterService operation unregisters a Service from a DeviceManager.

3.1.3.2.8.6.4.2 Synopsis.
void unregisterService(in Object registeredService) raises (
InvalidObjectReference);

3.1.3.2.8.6.4.3 Behavior.
The unregisterService operation shall remove the input registeredService from the
DeviceManager’s registeredServices attribute. The unregisterService operation shall unregister
the input registeredService from the DomainManager when the input registeredService is
registered with the DeviceManager and the DeviceManager is not in the shutting down state.

The unregisterService operation shall write a FAILURE_ALARM log record, when it cannot
successfully remove a registeredService from the DeviceManager’s registeredServices.

3.1.3.2.8.6.4.4 Returns.
This operation does not return any value.

3.1.3.2.8.6.4.5 Exceptions/Errors.
The unregisterService operation shall raise the CF InvalidObjectReference when the input
registeredService is a nil CORBA object reference or does not exist in the DeviceManager’s
registeredServices attribute.

3.1.3.2.8.6.5 shutdown.
3.1.3.2.8.6.5.1 Brief Rationale.
The shutdown operation provides the mechanism to terminate a DeviceManager.

3.1.3.2.8.6.5.2 Synopsis.
void shutdown();

3.1.3.2.8.6.5.3 Behavior.
The shutdown operation shall unregister the DeviceManager from the DomainManager.

MSRC-5000SCA
rev. 2.2

3-89

The shutdown operation shall perform releaseObject on all of the DeviceManager’s registered
Devices (DeviceManager’s registeredDevices attribute).

The shutdown operation shall cause the DeviceManager to be unavailable (i.e. released from the
CORBA environment and its process terminated on the OS), when all of the DeviceManager’s
registered Devices are unregistered from the DeviceManager.

3.1.3.2.8.6.5.4 Returns.
This operation does not return any value.

3.1.3.2.8.6.5.5 Exceptions/Errors.
This operation does not raise any exceptions.

3.1.3.2.8.6.6 getComponentImplementationId.
3.1.3.2.8.6.6.1 Brief Rational.
The getComponentImplementationId operation returns the SPD implementation ID that the
DeviceManager interface used to create a component.

3.1.3.2.8.6.6.2 Synopsis.
string getComponentImplementationId (in string componentInstantiationId);

3.1.3.2.8.6.6.3 Behavior.
The getComponentImplementationId operation will return the SPD implementation element’s ID
attribute that matches the ID attribute of the SPD implementation element used to create the
component specified by the input componentInstantiationId parameter.

3.1.3.2.8.6.6.4 Returns.
The getComponentImplementationId operation shall return the SPD implementation element’s
ID attribute that matches the SPD implementation element used to create the component
identified by the input componentInstantiationId parameter. The
getComponentImplementationId operation shall return an empty string when the input
componentInstantiationId parameter does not match the ID attribute of any SPD implementation
element used to create the component.

3.1.3.2.8.6.6.5 Exceptions/Errors.
This operation does not raise any exceptions.

3.1.3.3 Framework Services Interfaces.
Framework Services Interfaces shall be implemented using the CF IDL presented in Appendix C.

3.1.3.3.1 File.
3.1.3.3.1.1 Description.
The File interface provides the ability to read and write files residing within a CF-compliant,
distributed FileSystem. A file can be thought of conceptually as a sequence of octets with a
current filePointer describing where the next read or write will occur. This filePointer points to
the beginning of the file upon construction of the file object. The File interface is modeled after
the POSIX/C file interface. (Reference File Interface UML in Figure 3-31.)

MSRC-5000SCA
rev. 2.2

3-90

3.1.3.3.1.2 UML.

Figure 3-31. File Interface UML

3.1.3.3.1.3 Types.
3.1.3.3.1.3.1 IOException.
The IOException exception indicates an error occurred during a read or write operation to a File.
The error number shall indicate an ErrorNumberType value (e.g., EFBIG, ENOSPC, EROFS).
The message is component-dependent, providing additional information describing the reason
for the error.
exception IOException{ ErrorNumberType errorNumber; string msg; };

3.1.3.3.1.3.2 InvalidFilePointer.
The InvalidFilePointer exception indicates the file pointer is out of range based upon the current
file size.
exception InvalidFilePointer{};

3.1.3.3.1.4 Attributes.
3.1.3.3.1.4.1 fileName.
The readonly fileName attribute shall contain the file name given to the FileSystem open/create
operation. The syntax for a filename is based upon the UNIX operating system. That is, a

File
fileName : string
filePointer : unsigned long

read(data : out OctetSequence, length : in unsigned long) : void
write(data : in OctetSequence) : void
sizeOf() : unsigned long
close() : void
setFilePointer(filePointer : in unsigned long) : void

<<Interface>>

FileException
<<CORBAException>>

OctetSequence
<<CORBATypedef>>

ErrorNumberType
<<CORBAEnum>>

MSRC-5000SCA
rev. 2.2

3-91

sequence of directory names separated by forward slashes (/) followed by the base filename. The
fileName attribute will contain the filename given to the FileSystem open operation.
readonly attribute string fileName;

3.1.3.3.1.4.2 filePointer.
The readonly filePointer attribute shall contain the file position where the next read or write will
occur.
readonly attribute unsigned long filePointer;

3.1.3.3.1.5 Operations.
3.1.3.3.1.5.1 read.
3.1.3.3.1.5.1.1 Brief Rationale.
Applications require the read operation in order to retrieve data from remote files.

3.1.3.3.1.5.1.2 Synopsis.
void read(out OctetSequence data, in unsigned long length) raises (
IOException);

3.1.3.3.1.5.1.3 Behavior.
The read operation shall read, from the referenced file, the number of octets specified by the
input length parameter and advance the value of the filePointer attribute by the number of octets
actually read. The read operation shall read less than the number of octets specified in the input-
length parameter, when an end of file is encountered.

3.1.3.3.1.5.1.4 Returns.
The read operation shall return via the out Message parameter a CF OctetSequence that equals
the number of octets actually read from the File. If the filePointer attribute value reflects the end
of the File, the read operation shall return a 0-length CF OctetSequence.

3.1.3.3.1.5.1.5 Exceptions/Errors.
The read operation shall raise the IOException when a read error occurs.

3.1.3.3.1.5.2 write.
3.1.3.3.1.5.2.1 Brief Rationale.
Applications require the write operation in order to write data to remote files.

3.1.3.3.1.5.2.2 Synopsis.
void write(in OctetSequence data) raises (IOException);

3.1.3.3.1.5.2.3 Behavior.
The write operation shall write data to the file referenced. If the write is successful, the write
operation shall increment the filePointer attribute to reflect the number of octets written. If the
write is unsuccessful, the filePointer attribute value shall maintain or be restored to its value prior
to the write operation call.

3.1.3.3.1.5.2.4 Returns.
This operation does not return any value.

MSRC-5000SCA
rev. 2.2

3-92

3.1.3.3.1.5.2.5 Exceptions/Errors.
The write operation shall raise the IOException when a write error occurs.

3.1.3.3.1.5.3 sizeOf.
3.1.3.3.1.5.3.1 Brief Rationale.
An application may need to know the size of a file in order to determine memory allocation
requirements.

3.1.3.3.1.5.3.2 Synopsis.
unsigned long sizeOf() raises (FileException);

3.1.3.3.1.5.3.3 Behavior.
There is no significant behavior beyond the behavior described by the following section.

3.1.3.3.1.5.3.4 Returns.
The sizeOf operation shall return the number of octets stored in the file.

3.1.3.3.1.5.3.5 Exceptions/Errors.
The sizeOf operation shall raise the CF FileException when a file-related error occurs (e.g., file
does not exist anymore).

3.1.3.3.1.5.4 close.
3.1.3.3.1.5.4.1 Brief Rationale.
The close operation is needed in order to release file resources once they are no longer needed.

3.1.3.3.1.5.4.2 Synopsis.
void close() raises (FileException);

3.1.3.3.1.5.4.3 Behavior.
The close operation shall release any OE file resources associated with the component. The
close operation shall make the file unavailable to the component.

3.1.3.3.1.5.4.4 Returns.
This operation does not return any value.

3.1.3.3.1.5.4.5 Exceptions/Errors.
The close operation shall raise the CF FileException when it cannot successfully close the file.

3.1.3.3.1.5.5 setFilePointer.
3.1.3.3.1.5.5.1 Brief Rationale.
The setFilePointer operation positions the file pointer where the next read or write will occur.

3.1.3.3.1.5.5.2 Synopsis.
void setFilePointer(in unsigned long filePointer) raises (
InvalidFilePointer, FileException);

3.1.3.3.1.5.5.3 Behavior.
The setFilePointer operation shall set the filePointer attribute value to the input filePointer.

MSRC-5000SCA
rev. 2.2

3-93

3.1.3.3.1.5.5.4 Returns.
This operation does not return any value.

3.1.3.3.1.5.5.5 Exceptions/Errors.
The setFilePointer operation shall raise the CP FileException when the file pointer for the
referenced file cannot be set to the value of the input filePointer parameter. The setFilePointer
operation shall raise the InvalidFilePointer exception when the value of the filePointer parameter
exceeds the file size.

3.1.3.3.2 FileSystem.
3.1.3.3.2.1 Description.
The FileSystem interface defines CORBA operations that enable remote access to a physical file
system. (Reference FileSystem interface UML in Figure 3-32.)

3.1.3.3.2.2 UML.

Figure 3-32. FileSystem Interface UML

3.1.3.3.2.3 Types.
3.1.3.3.2.3.1 UnknownFileSystemProperties.
The UnknownFileSystemProperties exception indicates a set of properties unknown by the
component.
exception UnknownFileSystemProperties {properties invalidProperties; };

3.1.3.3.2.3.2 fileSystemProperties Query Constants.
Constants are defined to be used for the query operation (see section 3.1.3.3.2.5.9).
const string SIZE = “SIZE”;

File
<<Interface>>

FileSystem

remove(fileName : in string) : void
copy(sourceFileName : in string, destinationFileName : in string) : void
exists(fileName : in string) : boolean
list(pattern : in string) : FileInformationSequence
create(fileName : in string) : File
open(fileName : in string, read_Only : in boolean) : File
mkdir(directoryName : in string) : void
rmdir(directoryName : in string) : void
query(fileSystemProperties : inout Properties) : void

<<Interface>>

StringSequence
<<CORBATypedef>>

uses

FileException
<<CORBAException>>

InvalidFileName
<<CORBAException>>

Properties
<<CORBATypedef>>

MSRC-5000SCA
rev. 2.2

3-94

const string AVAILABLE_SPACE = “AVAILABLE_SPACE”;

3.1.3.3.2.3.3 FileInformationType.
The FileInformationType indicates the information returned for a file. Not all the fields in the
FileInformationType are applicable for all file systems. At a minimum, the FileSystem shall
support name, kind, and size information for a file. Examples of other file properties that can be
specified are created time, modified time, and last access time.
struct FileInformationType
{

string name;
FileType kind;
unsigned long long size;
Properties fileProperties;

};

name: This field indicates the simple name of the file.

kind: This field indicates the type of the file entry.

size: This field indicates the size in octets.

3.1.3.3.2.3.4 FileInformationSequence.
The FileInformationSequence type defines an unbounded sequence of FileInformationTypes.
typedef sequence<FileInformationType>FileInformationSequence;

3.1.3.3.2.3.5 FileType.
The FileType indicates the type of file entry. A file system can have PLAIN or DIRECTORY
files and mounted file systems contained in a FileSystem.
Enum FileType
{

PLAIN,
DIRECTORY,
FILE_SYSTEM

};

3.1.3.3.2.3.6 CREATED_TIME_ID.
The CREATED_TIME_ID is the identifier for the created time file property. A created time
property indicates the time the file was created. The value for created time shall be unsigned long
long and measured in seconds since 00:00:00 UTC, Jan. 1, 1970.
Constant string CREATED_TIME_ID = “CREATED_TIME”;

3.1.3.3.2.3.7 MODIFIED_TIME_ID.
The MODIFIED_TIME_ID is the identifier for the modified time file property. The modified
time property is the time the file data was last modified. The value for modified time property
shall be unsigned long long and measured in seconds since 00:00:00 UTC, Jan. 1, 1970.
Constant string MODIFIED_TIME_ID=”MODIFIED_TIME”;

MSRC-5000SCA
rev. 2.2

3-95

3.1.3.3.2.3.8 LAST_ACCESS_TIME_ID.
The LAST_ACCESS_TIME_ID is the identifier for the last access time file property. The last
access time property is the time the file was last access (e.g. read). The value for last access time
property shall be unsigned long long and measured in seconds since 00:00:00 UTC, Jan. 1, 1970.
Constant string LAST_ACCESS_TIME_ID=”LAST_ACCESS_TIME”;

3.1.3.3.2.4 Attributes.
N/A.

3.1.3.3.2.5 Operations.
3.1.3.3.2.5.1 remove.
3.1.3.3.2.5.1.1 Brief Rationale.
The remove operation provides the ability to remove a file from a file system.

3.1.3.3.2.5.1.2 Synopsis.
void remove(in string fileName) raises(FileException, InvalidFileName);

3.1.3.3.2.5.1.3 Behavior.
The remove operation shall remove the file with the given filename.

3.1.3.3.2.5.1.4 Returns.
This operation does not return any value.

3.1.3.3.2.5.1.5 Exceptions/Errors.
The remove operation shall raise the InvalidFileName exception when the filename is not a valid
filename or not an absolute pathname.

The remove operation shall raise the CF FileException when a file-related error occurs.

3.1.3.3.2.5.2 copy.
3.1.3.3.2.5.2.1 Brief Rationale.
The copy operation provides the ability to copy a file to another file.

3.1.3.3.2.5.2.2 Synopsis.
void copy(in string sourceFileName, in string destinationFileName) raises(
InvalidFileName, FileException);

3.1.3.3.2.5.2.3 Behavior.
The copy operation shall copy the source file with the specified sourceFileName to the
destination file with the specified destinationFileName.

3.1.3.3.2.5.2.4 Returns.
This operation does not return any value.

3.1.3.3.2.5.2.5 Exceptions/Errors.
The copy operation shall raise the CF FileException when a file-related error occurs.

The copy operation shall raise the InvalidFileName exception when the filename is not a valid
file name or not an absolute pathname.

MSRC-5000SCA
rev. 2.2

3-96

3.1.3.3.2.5.3 exists.
3.1.3.3.2.5.3.1 Brief Rationale.
The exists operation provides the ability to verify the existence of a file within a FileSystem.

3.1.3.3.2.5.3.2 Synopsis.
boolean exists(in string fileName) raises(InvalidFileName);

3.1.3.3.2.5.3.3 Behavior.
The exists operation shall check to see if a file exists based on the fileName parameter.

3.1.3.3.2.5.3.4 Returns.
The exists operation shall return True if the file exists, or False if it does not.

3.1.3.3.2.5.3.5 Exceptions/Errors.
The exists operation shall raise the InvalidFileName exception when fileName is not a valid file
name or not an absolute pathname.

3.1.3.3.2.5.4 list.
3.1.3.3.2.5.4.1 Brief Rationale.
The list operation provides the ability to obtain a list of files along with their information in the
FileSystem according to a given search pattern. The list operation can be used to return
information for one file or for a set of files.

3.1.3.3.2.5.4.2 Synopsis.
FileInformationSequence list(in string pattern)raises (FileException,
InvalidFileName);

3.1.3.3.2.5.4.3 Behavior.
The list operation shall return a list of file information based upon the search pattern given. The
list operation shall support the following wildcard characters for base file names (i.e., the part
after the right-most slash):

(1) * used to match any sequence of characters (including null).

(2) ? used to match any single character.

These wildcards may only be applied to the base filename in the search pattern given. For
example, the following are valid search patterns:

/tmp/files/*.* Returns all files and directories within the /tmp/files directory. Directory
names indicated with a “/” at the end of the name.

/tmp/files/foo* Returns all files beginning with the letters “foo” in the /tmp/files directory.

/tmp/files/f?? Returns all 3 letter files beginning with the letter f in the /tmp/files
directory.

MSRC-5000SCA
rev. 2.2

3-97

3.1.3.3.2.5.4.4 Returns.
The list operation shall return a FileInformationSequence for files that match the wildcard
specification as specified in the input pattern parameter. The list operation will return a zero
length sequence when no file matching occurred for the input pattern parameter.

3.1.3.3.2.5.4.5 Exceptions/Errors.
The list operation shall raise the InvalidFileName exception when the input pattern does not start
with a slash "/" or cannot be interpreted due to unexpected characters.

The list operation shall raise the FileException when a file-related error occurs.

3.1.3.3.2.5.5 create.
3.1.3.3.2.5.5.1 Brief Rationale.
The create operation provides the ability to create a new file on the FileSystem.

3.1.3.3.2.5.5.2 Synopsis.
File create(in string fileName) raises(InvalidFileName, FileException);

3.1.3.3.2.5.5.3 Behavior.
The create operation shall create a new File based upon the provided fileName attribute.

3.1.3.3.2.5.5.4 Returns.
The create operation shall return a File component reference to the opened file. The create
operation shall return a null file component reference if an error occurs.

3.1.3.3.2.5.5.5 Exceptions/Errors.
The create operation shall raise the CF FileException if the file already exists or another file
error occurred.

The create operation shall raise the InvalidFileName exception when a fileName is not a valid
file name or not an absolute pathname.

3.1.3.3.2.5.6 open.
3.1.3.3.2.5.6.1 Brief Rationale.
The open operation provides the ability to open a file for read or write.

3.1.3.3.2.5.6.2 Synopsis.
File open(in string fileName, in boolean read_Only) raises(InvalidFileName,
FileException);

3.1.3.3.2.5.6.3 Behavior.
The open operation shall open a file based upon the input fileName. The read_Only parameter
indicates if the file should be opened for read access only. The open operation shall open the file
for write access when the read_Only parameter is false.

3.1.3.3.2.5.6.4 Returns.
The open operation shall return a File component parameter on successful completion. The open
operation shall return a null file component reference if the open operation is unsuccessful. If
the file is opened with the read_Only flag set to true, then writes to the file will be considered an
error.

MSRC-5000SCA
rev. 2.2

3-98

3.1.3.3.2.5.6.5 Exceptions/Errors.
The open operation shall raise the CF FileException if the file does not exist or another file error
occurred.

The open operation shall raise the InvalidFileName exception when the filename is not a valid
file name or not an absolute pathname.

3.1.3.3.2.5.7 mkdir.
3.1.3.3.2.5.7.1 Brief Rationale.
The mkdir operation provides the ability to create a directory on the file system.

3.1.3.3.2.5.7.2 Synopsis.
void mkdir(in string directoryName) raises(InvalidFileName, FileException);

3.1.3.3.2.5.7.3 Behavior.
The mkdir operation shall create a FileSystem directory based on the directoryName given. The
mkdir operation shall create all parent directories required to create the directoryName path
given.

3.1.3.3.2.5.7.4 Returns.
This operation does not return any value.

3.1.3.3.2.5.7.5 Exceptions/Errors.
The mkdir operation shall raise the CF FileException if a file-related error occurred during the
operation.

The mkdir operation shall raise the InvalidFileName exception when the directoryName is not a
valid directory name.

3.1.3.3.2.5.8 rmdir.
3.1.3.3.2.5.8.1 Brief Rationale.
The rmdir operation provides the ability to remove a directory from the file system.

3.1.3.3.2.5.8.2 Synopsis.
void rmdir(in string directoryName) raises(InvalidFileName, FileException);

3.1.3.3.2.5.8.3 Behavior.
The rmdir operation shall remove a FileSystem directory, based on the directoryName given,
only if the directory is empty (no files exist in directory).

3.1.3.3.2.5.8.4 Returns.
This operation does not return any value.

3.1.3.3.2.5.8.5 Exceptions/Errors.
The rmdir operation shall raise the CF FileException when the directory does not exist, if the
directory is not empty, or another file-related error occurred.

The rmdir operation shall raise the InvalidFileName exception when the directoryName is not a
valid directory name.

MSRC-5000SCA
rev. 2.2

3-99

3.1.3.3.2.5.9 query.
3.1.3.3.2.5.9.1 Brief Rationale.
The query operation provides the ability to retrieve information about a file system.

3.1.3.3.2.5.9.2 Synopsis.
void query(inout Properties fileSystemProperties) raises(
UnknownFileSystemProperties);

3.1.3.3.2.5.9.3 Behavior.
The query operation shall return file system information to the calling client based upon the
given fileSystemProperties' ID.

As a minimum, the FileSystem query operation shall support the following fileSystemProperties:

1. SIZE – an ID value of “SIZE causes query to return an unsigned long long containing
the file system size (in octets).

2. AVAILABLE SPACE – an ID value of “AVAILABLE SPACE” causes the query
operation to return an unsigned long long containing the available space on the file
system (in octets),

See section 3.1.3.3.2.3.2 for the constants for the fileSystemProperties.

3.1.3.3.2.5.9.4 Returns.
This operation does not return any value.

3.1.3.3.2.5.9.5 Exceptions/Errors.
The query operation shall raise the UnknownFileSystemProperties exception when the given file
system property is not recognized.

3.1.3.3.3 FileManager.
3.1.3.3.3.1 Description.
Multiple, distributed FileSystems may be accessed through a FileManager. The FileManager
interface appears to be a single FileSystem although the actual file storage may span multiple
physical file systems. (Reference the FileManager interface UML in Figure 3-33.)

This is called a federated file system. A federated file system is created using the mount and
unmount operations. Typically, the DomainManager or system initialization software will
invoke these operations.

The FileManager inherits the IDL interface of a FileSystem. Based upon the pathname of a
directory or file and the set of mounted FileSystems, the FileManager will delegate the
FileSystem operations to the appropriate FileSystem. For example, if a FileSystem is mounted at
/ppc2, an open operation for a file called /ppc2/profile.xml would be delegated to the
mounted FileSystem. The mounted FileSystem will be given the filename relative to it. In this
example the FileSystem’s open operation would receive /profile.xml as the fileName
argument.

Another example of this concept can be shown using the copy operation. When a client invokes
the copy operation, the FileManager will delegate operations to the appropriate FileSystems
(based upon supplied pathnames) thereby allowing copy of files between FileSystems.

MSRC-5000SCA
rev. 2.2

3-100

If a client does not need to mount and unmount FileSystems, it can treat the FileManager as a
FileSystem by CORBA widening a FileManager reference to a FileSystem reference. One can
always widen a FileManager to a FileSystem since the FileManager is derived from a
FileSystem.

3.1.3.3.3.2 UML.

FileSystem
<<Interface>>

FileManager

mount(mountPoint : in string, file_System : in FileSystem) : void
unmount(mountPoint : in string) : void
getMounts() : MountSequence

<<Interface>>

InvalidFileName
<<CORBAException>>

FileSystem
<<Interface>>

Figure 3-33. FileManager Interface UML

3.1.3.3.3.3 Types.
3.1.3.3.3.3.1 MountType.
The MountType structure shall identify the FileSystems mounted within the FileManager.
struct MountType {

string mountPoint;
FileSystem fs;

};

3.1.3.3.3.3.2 MountSequence.
The MountSequence is an unbounded sequence of Mount types.
typedef sequence <MountType> MountSequence;

3.1.3.3.3.3.3 NonExistentMount.
The NonExistentMount exception indicates a mount point does not exist within the
FileManager.
exception NonExistentMount{};

MSRC-5000SCA
rev. 2.2

3-101

3.1.3.3.3.3.4 MountPointAlreadyExists.
The MountPointAlreadyExists exception indicates the mount point is already in use in the
FileManager.
exception MountPointAlreadyExists{};

3.1.3.3.3.3.5 InvalidFileSystem.
The InvalidFileSystem exception indicates the FileSystem is a null (nil) object reference.
exception InvalidFileSystem{};

3.1.3.3.3.4 Attributes.
N/A

3.1.3.3.3.5 Operations.
3.1.3.3.3.5.1 mount.
3.1.3.3.3.5.1.1 Brief Rationale.
The FileManager supports the notion of a federated file system. To create a federated file
system, the mount operation associated a FileSystem with a mount point (a directory name).

3.1.3.3.3.5.1.2 Synopsis.
void mount(in string mountPoint, in FileSystem file_System) raises(
InvalidFileName, InvalidFileSystem, MountPointAlreadyExists);

3.1.3.3.3.5.1.3 Behavior.
The mount operation shall associate the specified FileSystem with the given mountPoint. A
mountPoint name shall begin with a “/”. A mountPoint name is a logical directory name for a
FileSystem.

3.1.3.3.3.5.1.4 Returns.
This operation does not return any value.

3.1.3.3.3.5.1.5 Exceptions/Errors.
The mount operation shall raise the InvalidFileName exception when the input file name is
invalid.

The mount operation shall raise the MountPointAlreadyExists exception when the mountPoint
already exists in the file manager.

The mount operation shall raise the InvalidFileSystem exception when the input FileSystem is a
null object reference.

3.1.3.3.3.5.2 unmount.
3.1.3.3.3.5.2.1 Brief Rationale.
Mounted FileSystems may need to be removed from a FileManager.
3.1.3.3.3.5.2.2 Synopsis.
void unmount(in string mountPoint) raises(NonExistentMount);

MSRC-5000SCA
rev. 2.2

3-102

3.1.3.3.3.5.2.3 Behavior.
The unmount operation shall remove a mounted FileSystem from the FileManager whose
mounted name matches the input mountPoint name.

3.1.3.3.3.5.2.4 Returns.
This operation does not return any value.

3.1.3.3.3.5.2.5 Exceptions/Errors.
The unmount operation shall raise the NonExistentMount exception when the mountPoint does
not exist.

3.1.3.3.3.5.3 getMounts.
3.1.3.3.3.5.3.1 Brief Rationale.
File management user interfaces may need to list a FileManager’s mounted FileSystems.

3.1.3.3.3.5.3.2 Synopsis.
MountSequence getMounts();

3.1.3.3.3.5.3.3 Behavior.
The getMounts operation shall return a sequence of Mount structures that describe the mounted
FileSystems.

3.1.3.3.3.5.3.4 Returns.
The getMounts operation returns a sequence of Mount structures.

3.1.3.3.3.5.3.5 Exceptions/Errors.
This operation does not raise any exceptions.

3.1.3.3.3.5.4 File System Operations.
The system may support multiple FileSystem implementations. Some FileSystems will
correspond directly to a physical file system within the system. The FileManager interface shall
support a federated, or distributed, file system that may span multiple FileSystem components.
From the client perspective, the FileManager may be used just like any other FileSystem
component since the FileManager inherits all the FileSystem operations.

The FileManager’s inherited FileSystem operations behavior shall implement the requirements
of the FileSystem operations against the mounted file systems. The FileSystem operations ensure
that the filename/directory arguments given are absolute pathnames relative to a mounted
FileSystem. The FileManager’s FileSystem operations shall remove the FileSystem mounted
name from the input fileName before passing the fileName to an operation on a mounted
FileSystem.

The FileManager shall use the mounted FileSystem for FileSystem operations based upon the
mounted FileSystem name that exactly matches the input fileName to the lowest matching
subdirectory.

MSRC-5000SCA
rev. 2.2

3-103

3.1.3.3.3.5.5 query.
3.1.3.3.3.5.5.1 Brief Rationale.
The inherited query operation provides the ability to retrieve the same information for a set of
file systems.

3.1.3.3.3.5.5.2 Synopsis.
void query(inout Properties fileSystemProperties) raises(
UnknownFileSystemProperties);

3.1.3.3.3.5.5.3 Behavior.
The query operation shall return the combined mounted file systems information to the calling
client based upon the given input fileSystemProperties’ IDs. As a minimum, the query operation
shall support the following input fileSystemProperties IDs:

1. SIZE - a property item ID value of "SIZE" will cause the query operation to return the
combined total size of all the mounted file system as an unsigned long long property
value.

2. AVAILABLE_SPACE - a property item ID value of "AVAILABLE_SPACE" will
cause the query operation to return the combined total available space (in octets) of
all the mounted file system as unsigned long long property value.

3.1.3.3.3.5.5.4 Returns.
This operation does not return any value.

3.1.3.3.3.5.5.5 Exceptions/Errors.
The query operation shall raise the UnknownFileSystemProperties exception when the input
fileSystemProperties parameter contains an invalid property ID

3.1.3.3.4 Timer.
No SCA-mandated Timer interfaces have been defined at this time.

3.1.3.4 Domain Profile.
The hardware devices and software components that make up an SCA system domain are
described by a set of files that are collectively referred to as a Domain Profile. These files
describe the identity, capabilities, properties, inter-dependencies, and location of the hardware
devices and software components that make up the system. All of the descriptive data about a
system is expressed in the XML vocabulary. For purposes of this SCA specification, the
elements of the XML vocabulary have been based upon the OMG’s CORBA Components
specification (orbos/99-07-01). [Note: At the time of this writing, 99-07-01 is a draft standard].

The types of XML files that are used to describe a system's hardware and software assets are
depicted in Figure 3-34. The XML vocabulary within each of these files describes a distinct
aspect of the hardware and software assets.

Domain Profile files shall use the format of the Document Type Definitions (DTDs) provided in
Appendix D. DTD files are installed in the domain and shall have “.dtd” as their filename
extension. All XML files shall have as the first two lines as an XML declaration (?xml) and a
document type declaration (!DOCTYPE). The XML declaration specifies the XML version and

MSRC-5000SCA
rev. 2.2

3-104

whether the document is standalone. The document type declaration specifies the DTD for the
document. Example declarations are as follows:

-“<X?xml version=”1.0” standalone=”no?>”

-“<!DOCTYPE softwareassembly SYSTEM “softwareassembly.2.0.dtd”>”

Device Package Descriptor
<<DTDElement>>

Profile Descriptor
<<DTDElement>>

Properties Descriptor
<<DTDElement>>0..n0..n Software Component Descriptor

<<DTDElement>>

0..n0..n

Software Assembly Descriptor
<<DTDElement>>

11

Domain Profile

0..n0..n

Software Package Descriptor
<<DTDElement>>

11

0..n0..n

0..10..1

1..n1..n

Device Configuration Descriptor
<<DTDElement>>

0..n0..n

0..n0..n

1..n1..n

DomainManager
Configuration Descriptor

11

11
Profile Descriptor
<<DTDElement>>

11
11

Figure 3-34. Relationship of Domain Profile XML File Types

3.1.3.4.1 Software Package Descriptor.
A Software Package Descriptor (SPD) identifies a software component implementation(s). A
Software Package Descriptor file shall have a “.spd.xml” extension. General information about a
software package, such as the name, author, property file, and implementation code information
and hardware and/or software dependencies are contained in a Software Package Descriptor file.

3.1.3.4.2 Software Component Descriptor.
A Software Component Descriptor (SCD) contains information about a specific SCA software
component (Resource, ResourceFactory, Device). A Software Component Descriptor file shall
have a “.scd.xml” extension. A Software Component Descriptor file contains information about
the interfaces that a component provides and/or uses. A Software Component Descriptor for a
Device type has a reference to Device Package Descriptor file.

3.1.3.4.3 Software Assembly Descriptor.
A Software Assembly Descriptor (SAD) contains information about the components that make
up an application. The ApplicationFactory uses this information when creating an application.
A Software Assembly Descriptor file shall have a “.sad.xml” extension.

MSRC-5000SCA
rev. 2.2

3-105

3.1.3.4.4 Properties Descriptor.
A Property File contains information about the properties applicable to a software package or a
device package. A Properties File shall have a “.prf.xml” extension. A Properties File contains
information about the properties of a component such as configuration, test, execute, and
allocation types.

3.1.3.4.5 Device Package Descriptor.
A Device Package Descriptor (DPD) identifies a class of a device (as described in Section 4). A
Device Package Descriptor File shall have a “.dpd.xml” extension. A Device Package
Descriptor also has Properties that define specific properties (capacity, serial number, etc.) for
this class of device.

3.1.3.4.6 Device Configuration Descriptor.
A Device Configuration Descriptor (DCD) contains information about the children Devices for a
Device, how to find the DomainManager, and the configuration information (Log, FileSystems,
etc.) for a Device. A Device Configuration Descriptor file shall have a “.dcd.xml” extension.

3.1.3.4.7 Profile Descriptor
A Profile Descriptor contains an absolute file name for either a Software Package Descriptor,
Software Assembly Descriptor, or a Device Configuration Descriptor. The Profile Descriptor is
derived from the Application, ApplicationFactory, and Device attributes.

3.1.3.4.8 DomainManger Configuration Descriptor.
A DomainManager Configuration Descriptor (DMD) contains configuration information for the
DomainManager. A DomainManager Configuration Descriptor file shall have a “.dmd.xml”
extension.

3.1.3.5 Core Framework Base Types.
The CF Base Types are the underlying types used in the CF interfaces.

3.1.3.5.1 Data Type.
This type is a CORBA IDL struct type, which can be used to hold any CORBA basic type or
static IDL type. The id attribute indicates the kind of value and type (e.g., frequency, preset,
etc.). The id can be an UUID string, an integer string, or a name identifier. The value attribute
can be any static IDL type or CORBA basic type.
struct DataType {
string id;
any value;

};

3.1.3.5.2 DeviceSequence.
The CF DeviceSequence type defines an unbounded sequence of Devices. The IDL to Ada
mapping has a problem with self-referential interfaces. To get around this problem, the interface
Device forward declaration has been created and this type has been moved outside of the Device
interface.
typedef sequence <Device> DeviceSequence;

MSRC-5000SCA
rev. 2.2

3-106

3.1.3.5.3 FileException.
The FileException indicates a file-related error occurred. The error number shall indicate an
ErrorNumberType value (e.g., EBADF, EEXIST, EISDIR, EMFILE, ENFILE, ENOENT,
ENOSPC, ENOTDIR, ENOTEMPTY, EROFS). The message provides information describing
the error. The message can be used for logging the error.
exception FileException{ErrorNumberType errorNumber; string msg;};

3.1.3.5.4 InvalidFileName.
The InvalidFileName exception indicates an invalid file name was passed to a file service
operation. The error number shall indicate an ErrorNumberType value (e.g.,
ENAMETOOLONG). The message provides information describing why the filename was
invalid.
exception InvalidFileName {ErrorNumberType errorNumber; string msg;};

3.1.3.5.5 InvalidObjectReference.
The InvalidObjectReference exception indicates an invalid CORBA object reference error.
exception InvalidObjectReference{string msg;};

3.1.3.5.6 InvalidProfile.
The InvalidProfile exception indicates an invalid profile error.
exception InvalidProfile{};

3.1.3.5.7 OctetSequence.
This type is a CORBA unbounded sequence of octets.
typedef sequence <octet> OctetSequence;

3.1.3.5.8 Properties.
The properties is a CORBA IDL unbounded sequence of CF Data Type(s), which can be used in
defining a sequence of name and value pairs.
typedef sequence <DataType> Properties;

3.1.3.5.9 StringSequence.
This type defines a sequence of strings.
typedef sequence <string> StringSequence;

3.1.3.5.10 UnknownProperties.
The UnknownProperties exception indicates a set of properties unknown by the component.
exception UnknownProperties {Properties invalidProperties };

3.1.3.5.11 DeviceAssignmentType.
DeviceAssignmentType defines a structure that associates a component with the Device upon
which the component must execute.
struct DeviceAssignmentType
{

MSRC-5000SCA
rev. 2.2

3-107

string componentId;
string assignedDeviceId;

}

3.1.3.5.12 DeviceAssignmentSequence.
The IDL sequence, CF DeviceAssignmentSequence, provides an unbounded sequence of 0..n CF
DeviceAssignmentTypes.
Typedef sequence <DeviceAssignmentType> DeviceAssignmentSequence;

3.1.3.5.13 ErrorNumberType.
This enum is used to pass error number information in various exceptions. Those exceptions
starting with “E” map the POSIX definitions, and can be found in IEEE Std 1003.1 1996 Edition.
Those exceptions starting with CF are defined below:

CFNOTSET CFNOTSET is not defined in the POSIX specification. CFNOTSET is an SCA
specific value that is applicable for any exception when the method specific or
standard POSIX error values are not appropriate.)

enum ErrorNumberType
{

CFNOTSET, E2BIG, EACCES, EAGAIN, EBADF, EBADMSG, EBUSY, ECANCELED,
ECHILD, EDEADLK, EDOM, EEXIST, EFAULT, EFBIG, EINPROGRESS, EINTR,
EINVAL, EIO, EISDIR, EMFILE, EMLINK, EMSGSIZE, ENAMETOOLONG,ENFILE,
ENODEV, ENOENT, ENOEXEC, ENOLCK, ENOMEM,ENOSPC, ENOSYS, ENOTDIR,
ENOTEMPTY, ENOTSUP ,ENOTTY, ENXIO,EPERM, EPIPE, ERANGE , EROFS, ESPIPE,
ESRCH, ETIMEDOUT ,EXDEV

};

3.2 APPLICATIONS.
Applications are programs that perform the functions of a specific SCA-compliant product.
They must meet the requirements of a procurement specification and are not defined by the SCA
except as they interface to the OE.

3.2.1 General Application Requirements.

3.2.1.1 OS Services.
Applications shall be limited to using the OS services that are designated as mandatory in the
SCA AEP as specified in section 3.1.1.

Applications shall perform file access through the CF File interfaces. Application file names
shall not exceed 40 characters.

To ensure controlled termination, applications shall have a signal handler installed for the
POSIX-defined SIGQUIT signal.

3.2.1.2 CORBA Services.
Applications shall be limited to using CORBA and CORBA services as specified in section
3.1.2. Dynamically-created stringified IORs may be used to provide an IOR reference value

MSRC-5000SCA
rev. 2.2

3-108

parameter. Static stringified IORs will not be allowed as they create portability problems. The
use of Log interface per section 3.1.2.3.3 is optional if informational messages are not logged.

3.2.1.3 CF Interfaces.
Applications shall implement the CF interfaces as specified in section 3.1.3.1 using the
corresponding IDL in Appendix C. The following exceptions to the use of CF interfaces are
allowed:

1. The use of ResourceFactory per section 3.1.3.1.7 is optional.

The TestableObject runTest operation (3.1.3.1.3.5.1), Resource stop operation (3.1.3.1.6.5.1),
and Resource start operation (3.1.3.1.6.5.2) are not called at start-up.

Each application process that uses Naming Service shall support the Naming Context IOR, Name
Binding, and the identifier execute parameters as described in 3.1.3.2.2.5.1.3 in addition to their
user-defined execute properties in the component’s SPD. The application shall bind its
components’ object reference to the Naming Context IOR using the Name Binding parameter as
described in section 3.1.2.2.1. Each executable component of an application shall set its identifier
attribute using the component identifier execute parameter. Each executable component of an
application shall accept arguments of the form described in 3.1.3.2.6.5.1.3.Applications'
components and DeviceManagers shall be provided with Domain Profile files per 3.1.3.4.

3.2.2 Application Interfaces.

Applications consist of one to many components. These components may be CORBA-capable
or not CORBA-capable components. For CORBA-capable components, in addition to
supporting the CF Base Application interfaces, the component can implement and use
component-specific interfaces for data and/or control. Interfaces provided by a component shall
be described in a Software Component Descriptor file as provides ports. Interfaces used by a
component shall be described in a Software Component Descriptor file as uses ports.

An application may have other external interfaces besides the Application interface. The
optional external interfaces for an application are the components’ ports referenced in the
application’s SAD externalports element. The application’s external interfaces shall be visible
and defined as described herein if:

1. the application provides a service that is used by more than one application, or

2. the service user requires the interface to be common across access service
implementations (e.g., HCI).

MSRC-5000SCA
rev. 2.2

3-109

3.2.2.1 Service APIs.
Service APIs provide definition and standardization of common functionality and interfaces for
use by SCA applications (e.g. waveforms). Services include Network Services, Security
Services, and I/O Services. Each Service API is defined by a Service Definition and Transfer
Mechanism. The API Supplement to the SCA Specification provides details and requirements
for Service APIs.

3.2.2.1.1 Service Definitions.
SCA-compliant Service Definitions consist of APIs, behavior, state, priority and additional
information that provide the contract between the Service Provider and the Service User. IDL is
used to define the interfaces for Service Definitions to foster reuse and interoperability. IDL
provides a method to inherit from multiple interfaces to form a new Service Definition.

3.2.2.1.2 API Transfer Mechanisms.
A Transfer Mechanism provides the communication between a service provider and a service
user that may be co-located or distributed across different processors. Figure 3-35 shows the
standard and alternate transfer mechanism structure for APIs.

MSRC-5000SCA
rev. 2.2

3-110

Object
Request

Semantics

Transfer &
Message

Syntax

Transports

Other
(e.g. STREAMS)

Other

Other
(e.g. TCP/IP)

OMG CORBA

...

CORBA IDL

GIOP

IIOP

(TCP/IP)

Other

(e.g.
shared
RAM)

SCA Standard Transfer
Mechanism

Alternative Transfer
Mechanism (if needed for

performance)

Figure 3-35. Standard and Alternate Transfer Mechanism

3.3 LOGICAL DEVICE.
A logical Device is a software proxy for a hardware device(s). Each hardware device used by an
application Resource component shall have an associated logical Device interface. Logical
Device interfaces include Device, LoadableDevice, ExecutableDevice, and AggregateDevice.
The logical Device interfaces are depicted in Figure 3-36.

MSRC-5000SCA
rev. 2.2

3-111

Device
usageState : UsageType
adminState : AdminType
operationalState : OperationalType
softwareProfile : string
label : string
compositeDevice : AggregateDevice

allocateCapacity()
deallocateCapacity()

<<Interface>>

AggregateDevice
devices : DeviceSequence

addDevice()
removeDevice()

<<Interface>>

ExecutableDevice

terminate()
execute()

<<Interface>>

LoadableDevice

load()
unload()

<<Interface>>

Resource
identifier : string

start()
stop()

<<Interface>>

Figure 3-36. Logical Device Interface Relationships

3.3.1 OS Services.

Logical Devices are not restricted to using the services designated as mandatory by the SCA
AEP as specified in 3-1.

MSRC-5000SCA
rev. 2.2

3-112

A logical Device’s executable parameters shall accept arguments of the form described in
3.1.3.2.6.5.1.3.

A logical Device shall accept the executable parameters as specified described in 3.1.3.2.8.5.

3.3.2 CORBA Services.

Logical Devices shall be limited to using CORBA and CORBA services as specified in section
3-2.

3.3.3 CF Interfaces.

A logical Device implements one of the following CF interfaces: Device, LoadableDevice or
ExecutableDevice.

In addition to the requirements stated in the Device interface (section 3.1.3.2.4), a logical Device
has the requirements as stated in the Resource, PropertySet, Lifecycle, Port, PortSupplier and
TestableObject interfaces.

A logical Device shall register itself with a DeviceManager using the executable DeviceManager
IOR parameter per 3.1.3.2.8.5.

An aggregated logical Device shall add itself to a composite Device using the executable
Composite Device IOR parameter per 3.1.3.2.8.5.

The executable parameters (PROFILE_NAME, COMPOSITE_DEVICE_IOR, DEVICE_ID and
DEVICE_LABEL) as described in 3.1.3.2.8.5 shall be used to set the Device’s softwareProfile,
compositeDevice, identifier, and label attributes.

A Device that has other Devices associated with it shall provide a “provides” port that
implements the AggregateDevice interface. The “provides” port name shall be named
“CompositeDevice”.

Additional service APIs and their ports beyond the CF adhere to the requirements as described in
section 3.2.2.2.

3.3.4 Profile

Each logical Device shall have a SPD, SCD, DPD, and one or more Properties Descriptors as
described in section 3.1.3.4. For each logical Device, allocation properties shall be defined in its
referenced SPD’s property file.

3.4 GENERAL SOFTWARE RULES.
This section identifies those rules and recommendations specific to the Software Architecture
that are not specifically addressed elsewhere in this specification.

3.4.1 Software Development Languages.

3.4.1.1 New Software.
Software developed for an SCA-compliant product shall be developed in a standard higher order
language, except at provided below, for ease in processor portability. The goal of new

MSRC-5000SCA
rev. 2.2

3-113

development should be to provide SW that is independent from platform and environment
details, ensuring minimal portability issues.

An exception is allowed to this requirement, if there are program performance requirements that
require the use of assembly language programming.

3.4.1.2 Legacy Software.
Legacy software is not required to be rewritten in a standard higher order language. Legacy
software shall be interfaced to the core framework in accordance with this specification.

MSRC-5000SCA
rev. 2.2

4-1

4 HARDWARE ARCHITECTURE DEFINITION
This section describes the methodology of using the SCA as the basis for partitioning the
Hardware (HW) Architecture in terms of an Object-Oriented approach. This Object-Oriented
approach describes a hierarchy of hardware class and subclass objects that represent the
architecture. Characteristics, or attributes, associated with each hierarchical class form the
domain independent basis for the definition of each physical hardware device. Section 4.5
specifies the hardware requirements.

4.1 BASIC APPROACH.
The definition of the HW Architecture consists of a set of HW classes that are common across all
domains. The top-level hardware classes correspond with top-level hardware functions. These
top-level HW classes are further refined into subclasses that correspond with lower-level
hardware functions. The attributes associated with these classes and/or subclasses describe the
individual class or subclass contributions to system features and capabilities.

During implementation, this hardware class structure can be used to describe the hardware
implementation in accordance with procurement specifications. This object-oriented approach
enables a consistent application of the HW architecture (classes and rules) across the various
domains (i.e., Handheld, Dismounted, Vehicular, Airborne, and Maritime/Fixed).

Attributes and the HW class structure will potentially have multiple users over the lifetime of
each hardware module. Initially, when the radio system engineer is designing a radio system,
class attributes provide a place to sort top-level requirements, either by direct allocation or by
analysis and allocation. After physical partitioning is performed, the attributes outline HW
module(s) specification(s). The hardware designer, through the module specifications, in effect,
uses the attributes to characterize the design of the modules.

Software applications also become users of HW attributes. The attributes are reported to the
DomainManager through the Device Profiles. As software applications become more
sophisticated, they will become increasingly dependent upon HW attributes, used potentially
both as variables or in software dependency checks in the applications.

4.2 CLASS STRUCTURE.
Class structure is the hierarchy that depicts how object-oriented classes and subclasses are
related. The SCA hardware class structure identifies functional elements that in turn are used in
the creation of physical system elements (HW devices). Using this object-oriented approach,
devices "inherit" from the class structure and share common physical and interface attributes,
thus making it easier to identify and compare device interchangeability. (In this use, the term
“inherit” simply means that attributes at a higher class-level are common with all the subclasses.
In the following figures, this feature is shown by a hollow arrow, the UML symbol for
“generalization”.)

Hardware devices represent physical implementations whose attributes are assigned specific
values. In this sense, the attributes define domain-neutral class objects (abstract classes) and the
values of the class attributes then place specific requirements on the implementation. HW
devices inherit common attributes via the hardware class structure. Devices can then be

MSRC-5000SCA
rev. 2.2

4-2

developed to satisfy procurement-specific requirements. All hardware devices will have values
assigned to the class attributes. (The attributes shown in the figures in this section are
representative of the attributes associated with the respective classes and are provided for
illustrative purposes.)

4.2.1 Top Level Class Structure.

The top-level SCA-Compliant Hardware class defines the system procurement-associated
attributes such as maintainability and availability requirements, as well as, physical,
environmental and device registration parameters. (Reference Figure 4-1.) The Chassis class
has unique physical, interface, platform power and external environment attribute values that are
related to external factors rather than individual modules within the chassis. The HWModule(s)
class represents a wide variety of SCA-compliant physical hardware that inherits attributes from
the SCA-Compliant Hardware superclass. Subclasses of HWModule(s) inherit all its attributes,
including those shown in Figure 4-2. Stereotypes, indicated by enclosure in double brackets
(<<stereotype>>), are included in the class diagrams to better group and manage attribute labels
and titles. The stereotypes are generally associated with particular users of the attributes. The
<<Registration>> stereotype attributes are those that become part of a Device Profile as reported
through a Device Package Descriptor file. All other stereotypes indicate attributes that, when
reported, become part of the Device Profile as reported through a Property File.

SCA-Compliant Hardware
Maintainability
Availability

Chassis
NumberOfSlots
BackPlaneType
PowerRequirements
CoolingRequirements

HW Module(s)
<<Programmability>>
.<<Performance> >

FormFactor
Environment
Power
<<Registration>>>
DeviceName

SerialNumber
Manufacturer

DeviceClass
ModelNumber

Parent Class

"Inheritance"
Relationship

Child Class

Attribute Stereotype

Attribute

Child Class

Figure 4-1. Top Level Hardware Class Structure

The Chassis subclass includes the attributes of number of module slots, form factor, back plane
type, platform environmental, power and cooling requirements. The HWModule(s) class is the
parent to all module sub-classes and provides the basic attributes that are inherited by all

MSRC-5000SCA
rev. 2.2

4-3

hardware modules. As the class structure hierarchy extends from the more general top level
down into the more specific lower levels, each subclass inherits the attributes of all the preceding
hierarchy of classes. Module compatibility can be ascertained by comparing appropriate
instantiated attributes.

4.2.2 HWModule(s) Class Structure.

The JTRS concepts of hardware reuse, extendibility and expandability dictate a modular
implementation approach. The hardware architecture presents two very distinct module types.
The first type contains software intensive processing elements (i.e., Digital Signal Processor
(DSP) modules and General Purpose Processor (GPP) cards), while the second type contains
non-programmable functionality (such as RF elements). As programmable capability and
programmable hardware technologies evolve, functionality will migrate from totally embedded
hardware towards more software intensive applications of the hardware functions.

There is a blurring of hardware/software functionality as systems are implemented. Functions
are realized from a combination of both hardware embedded functions and software functions.
Thus the HWModule(s) class framework shown in figure 4-2 includes functional classes that are
strictly programmable in nature (Processor) and others that have embedded functionality. This
provides the framework necessary to construct the elements for a software programmable radio.

HW Module(s)
<<Programmability>>
.<<Performance>>

RF

Power Supply

Modem Processor

GPS Reference Standard

INFOSEC I/O

Figure 4-2. Hardware Module Class Structure

The hardware class structure is expandable through the addition of new classes or through the
addition of new attributes to existing classes to allow for future growth capabilities. Stereotypes,
indicated by enclosure in double brackets (<<stereotype>>), are included in the class diagrams to
better group and manage attribute labels and titles.

4.2.3 Class Structure with Extensions.

Each hardware class can be extended further to provide additional attribute granularity. This
methodology provides both a formalized structure for hardware definition and the inherent
flexibility needed to allow for evolving requirements as well as hardware and software
capabilities.

MSRC-5000SCA
rev. 2.2

4-4

4.2.3.1 RF Class Extension.
The subclasses in figure 4-3 extend the RF class hierarchy. These subclasses relate to the typical
range of RF hardware devices such as, Antennas, Receivers, Exciters, and Power Amplifiers. As
with all HW subclasses, the attributes contained within these RF subclasses attempt to
encapsulate the functionality that can be used to describe the unique mix of features and
capabilities of the associated hardware device.

Cosite performance considerations place a special burden on the RF class. The intelligent
management of cosite performance requires monitoring and control of many of the RF subclass
modules. The hardware architecture supports cosite operation in two ways. First, there is a
cosite sub-class. This encapsulates the hardware that is specifically provided for cosite
operation. Second, a <<CositePerformance>> stereotype groups those attributes useful for a
cosite manager application. Such an application, while not part of the architecture itself, is an
implementation-specific capability to coordinate RF assets.

Antennas have historically been passive elements typically attached to the structure that houses
the communications system. While remaining very domain and platform unique, technology
growth continually improves the capabilities that can be performed in the communications
system 'front end', necessitating the inclusion of antennas in the core of JTRS. "Smart" antennas
include receive, transmit, and cosite mitigating elements, blurring the functional separation lines.
For this reason and because of the key role that antenna systems play in cosite management,
“Antenna” is incorporated in the class structure as an RF subclass.

MSRC-5000SCA
rev. 2.2

4-5

Antenna
VSWR
Gain
BeamSteering
FieldOf View
Polarization
Transmit/Receive
Nulling

Receiver
NoiseFigure
Up/DownConversion
<<Performance>>
Bandwidth
Selectivity
A/DSampleRate
A/DResolution
A/DThreshold
AGC
Equalization
Blanking
<<CositePerformance>>
Spurs
PhaseNoise
<<WaveFormSupport>> .
SupportedWaveforms

Exciter
Distortion
<<Performance>>
CarrierGeneration
D/AConversion
D/AThreshold
D/ASampleRate
AGC
DataConversion
Equalization
PowerControl
<<CositePerformance>>
Spurs
PhaseNoise
WidebandNoiseFloor
<<WaveFormSupport>> .
SupportedWaveforms

Power Amplifier
Distortion
VSWR_Tolerance
InputProtection
DrivePower
OutputLeveling
Gain
OutputProtection
ReceiverConnection
<<Performance>>
PAType
OperationalModes
<<CositePerformance>>
WidebandNoiseFloor
ReverseIM
<<WaveFormSupport>>
SupportedWaveforms

EMP/Lightning Protection
ResponseTime
VoltageLevel
EnergyLevel

Cosite Mitigation
Attenuation
Bandwidth

RF Distribution
Isolation
NumberOfChannels
DiversityCapability

RF
<<Performance>>
FrequencyRange
Channelization
TuningSpeed
PowerLevel
<<CositePerformance>>
DynamicRange

Figure 4-3. RF Class Extension

4.2.3.2 Modem Class Extension.
The Modem class shown in figure 4-4 has subclasses that encapsulate the attributes of
modulation and demodulation functions. The Modem class also contains attributes that can be
used to describe the range of signal processing and data conversion capabilities such as spreading
and de-spreading. The <<WaveFormSupport>> stereotype labels the attribute of
SupportedWaveforms. This is an attribute indicating specifically what waveforms the modem is
capable of performing.

MSRC-5000SCA
rev. 2.2

4-6

Modem
TRANSEC
<<WaveFormSupport>>
SupportedWaveforms
<<Performance>>
DataConversion
DynamicRange
CodingRate
CodingType
Equalization
InterleaveType
InterleaveRate
ModulationType
ModulationRate
SampleRate

Modulator
<<Performance>>
PreModulationFiltering
Multiplexing
Spreading

Demodulator
DiversityCombining
FrequencyTracking
InterferenceExcision
Multipath
<<Performance>>
CarrierSync
SymbolSync
CarrierSense
Despreading
DeMultiplexing

Figure 4-4. Modem Class Extension

4.2.3.3 Processor Class Extension.
The Processor class shown in figure 4-5 directly supports software operations by providing the
processors, memory, and supporting functions. Devices derived from this class include General
Purpose Processors, Digital Signal Processors, and extend to modules utilizing programmable
logic devices (FPGAs, etc.). The class captures the attributes of processing devices needed by
the system resources. This Processor class represents the type of hardware that, in itself,
essentially has no unique radio-functional capabilities of its own. Its actual use, or personality, is
a function of the software that is loaded into and executed on it. It can be envisioned that as
processor speeds and software capabilities evolve, this class of hardware will tend to dominate
future radio systems while some of the other hardware specific functions will be replaced by
processors and software. As this happens, the attributes associated with function and
performance will effectively migrate to the software applications that are running on the host
processors.

MSRC-5000SCA
rev. 2.2

4-7

Processor
<<Programmability>>
Type
ClockSpeed
MemoryCapacity
ProcessingCapability
OperatingSystem

GPP DSP FPGA

Figure 4-5. Processor Class

4.2.3.4 INFOSEC Class.
The INFOSEC class provides structure for a hardware device that is described by the type of
cryptographic features it supports and certifications for which it has been qualified. Figure 4-6
lists INFOSEC class attributes.

INFOSEC
Certification
Accreditation
Type
Alarms

Anti-Tamper
Authentication
Bypass Mode
Fill Type
Keys
MLS

Network Security
OTAR

TEMPEST

Validation
Zeroize Capability

Access Control()
Authentication()

Key Management()

Number of Channels

Encrypt/Decrypt

Sense Pattern
Synch/Resynch
Key Management()

COMSEC Type
TRANSEC Type
Algorithms

Access Control

Monitor Access
Monitor Users
Control Data Paths

Type
Method

Figure 4-6. INFOSEC Class

MSRC-5000SCA
rev. 2.2

4-8

4.2.3.5 I/O Class Extension.
The I/O Class shown in figure 4-7 provides representation for general physical connectivity and
is not limited to just user interfaces.

For every hardware device, the critical interfaces are those that are presented to the “outside
world”. The definition of a critical interface is dependent on the class hierarchy level at which
the hardware device is being viewed. For example, if the HW device is a complete radio system,
it inherits attributes from the chassis class and its critical interfaces are defined at the chassis
physical boundary. Additionally, each module within the radio system has critical interfaces
unique to it; and its I/O attributes are inherited from the I/O subclass.

I/O
PinAssignment(s)

Digital Bus
Serial
Parallel
Standard

FanIn/Out
Network

RF I/O
Impedance
VSWR
SignalLevel
Frequency

PhotonicDigital Discrete
LogicType
FanIn/Out

Analog
Impedance
SignalLevel
Bandwidth

Human-Machine
Keypad
Display
Microphone
Speaker

Figure 4-7. I/O Class Extension

4.2.4 Attribute Composition.

As hardware technology evolves, hardware modules will encompass increased levels of
functionality due to higher levels of integration. This will allow more functional hardware
classes to be realized within individual physical hardware modules. The function of the
individual classes remains the same, but they are physically realized on the same circuit card or
module. UML provides the 'composition' relationship to represent this. An example of this is
shown in figure 4-8, showing a module that provides receive, transmit, and
modulation/demodulation capabilities, and using the hardware class model to illustrate this
fusion of capabilities. The resultant attribute list for the module will be composed of the unique
mix of features encapsulated by the four hardware classes from which it is composed. Since
each of the individual classes inherit attributes from its respective higher-level class, the
hardware module also inherits from the higher levels.

MSRC-5000SCA
rev. 2.2

4-9

<Modulator><Exciter><Receiver>

<Company XYZ Transceiver/Modem>

<Demodulator>

Composition

Figure 4-8. Typical Hardware Device Description using the SCA HW Class Structure

4.3 DOMAIN CRITERIA.
As communications systems assume multi-band, multi-channel, and multi-mission capabilities, a
dilemma arises. When trying to satisfy the needs of both the small, highly mobile user
(Handheld Domain) and the large command center (Maritime/Fixed Domain), it is evident that
distinctly different mission and platform constraints exist. Offering the same solution for both
extremes is obviously not the optimum – or cost effective – solution for either. The highly
mobile user requires a compact, environmentally robust terminal containing embedded message
processing, sized sufficiently to their needs, but not so large as to meet the intensive
filtering/formatting/networking needs of the command center. The command center, on the other
hand, requires environmental robustness only to the inhabited level. There are many, real
barriers to complete commonality - cost being the largest. The most significant hardware cost-
savings potential is the use of COTS standards, technology, and components, where possible.
The SCA provides the standard for use of COTS technology, design reuse across products, and
an open, well-documented architecture allowing multiple contractors to implement an entire
system or only a portion of it.

4.4 PERFORMANCE RELATED ISSUES.
A particular implementation of the SCA can have significant impact on the equipment
performance, especially in the case of complex waveforms and multi-channel radios. The areas
of cosite performance and system control timing have been identified as two key performance
areas for careful consideration. Discussions of the cosite effects and mitigation techniques
applicable to the physical implementation of the architecture are in the SRD.

4.5 GENERAL HARDWARE RULES.
Requirements placed on hardware objects by the SCA reflect a balance between the need to
support extendibility and interchangeability, and the support of technology growth and domain
constraints. The result is a limited set of specific rules (listed below) augmented by
implementation guidelines, much of which is in the SRD.

4.5.1 Device Profile.

Each supplied hardware device shall be provided with its associated Domain Profile files as
defined in section 3.1.3.4, Domain Profile.

MSRC-5000SCA
rev. 2.2

4-10

4.5.2 Hardware Critical Interfaces.

4.5.2.1 Interface Definition.
Hardware critical interfaces shall be defined in Interface Control Documents that are available to
other parties without restriction. Critical interfaces are those interfaces at the physical boundary
of a replaceable device that are required for the operation and maintenance of the device.

4.5.2.2 Interface Standards.
Hardware critical interfaces shall be in accordance with commercial or government standards,
unless there are program performance requirements that require a non-standard interface. If so
required, the non-standard interface shall be clearly and openly documented to the extent that
interfacing or replacement hardware can be developed by other parties without restriction.

4.5.2.2.1 Interface Selection.
In addition to the above, interface selection should consider the availability of supporting
products that have wide usage, are available from multiple vendors, and are expected to have
long-term support in the industry.

4.5.3 Form Factor.

The form factor of the hardware objects should be, where practical, in accordance with
commercial standards.

4.5.4 Modularity.

The partitioning of the hardware architecture into modules should be chosen to allow for ease of
upgrade through technology insertion or replacement of modules based on form, fit, and
function. Module boundaries are critical interfaces as defined in 4.5.2.1.

MSRC-5000SCA
rev. 2.2

5-1

5 SECURITY ARCHITECTURE DEFINITION
The security requirements in this section apply to the CF when security is implemented in a
JTRS. Additional security requirements, beyond the CF, are in the Security Supplement to the
SCA.

5.1 ADDITIONAL CF SECURITY REQUIREMENTS.

5.1.1 Application.
The Application releaseObject operation shall only disconnect components’ ports that are
authorized by an authentication service.

The Application releaseObject operation shall request removal of the Application’s Ports’ access
setups from the access control database.

The Application releaseObject operation shall log a Security_Alarm event when unable to
disconnect components’ ports because authorization was not granted by an authentication
service.

Application components' SPD implementation dependency propertyref elements shall indicate a
dependency to a red or black device (directly or indirectly).

5.1.2 ApplicationFactory.
The ApplicationFactory create operation shall only create components that are authorized by an
authentication service.

The ApplicationFactory create operation shall only connect components’ ports together that are
authorized by an authentication service.

If port connections between components need to be access-controlled during execution, then the
ApplicationFactory create operation shall provide an update to the access control database. The
ApplicationFactory create operation shall provide updates to an access control database for all
components ports connections as stated in the application's SAD file.

The ApplicationFactory shall log a Security_Alarm event when unable to connect ports or create
components because authorization was not granted by an authentication service.

5.1.3 DomainManager.
The DomainManager installApplication operation shall send the information specified in the
Security Supplement to the control/bypass mechanism Resource for the black-side components
being accessed by red-side components and for red-side components being accessed by black-
side components.

The DomainManager uninstallApplication operation shall request removal of the application’s
information specified in the Security Supplement from the control/status bypass mechanism.

Devices SPD properties shall have an allocation property that indicates a red or black device.
Parent Devices shall send their child Devices information specified in the Security Supplement to

MSRC-5000SCA
rev. 2.2

5-2

the control/status bypass mechanism. A parentless Device shall send its information specified in
the Security Supplement to the control/status bypass mechanism.

MSRC-5000SCA
rev. 2.2

6-1

6 COMMON SERVICES AND DEPLOYMENT CONSIDERATIONS

6.1 COMMON SYSTEM SERVICES.
This section will define any common system services that are not part of the CF but are
considered part of the SCA. None have been identified at this time.

6.2 OPERATIONAL AND DEPLOYMENT CONSIDERATIONS.
This section will address common interfaces or features necessary to support deployment of
SCA-compliant systems in the field. None have been identified at this time.

MSRC-5000SCA
rev. 2.2

6-2

MSRC-5000SCA
rev. 2.2

7-1

7 ARCHITECTURE COMPLIANCE
This section defines the criteria for certifying candidate system, hardware, and software application
products to this specification.

This specification may be applied to procurement of a multitude of radio products and
communication systems. In addition, this specification may also be applied to hardware-only or
software-only products that would be hosted on SCA-compliant systems.

7.1 CERTIFICATION AUTHORITY.
The JTRS Joint Program Office (JPO) holds the authority to certify that a candidate product meets
the requirements of this specification. This authority may be transferred, in time, to a general
standards body.

7.2 RESPONSIBILITY FOR COMPLIANCE EVALUATION.
The responsibility for performing the evaluation of a candidate product's compliance is TBD. This
body will determine the test methods and procedures used to establish compliance.

7.3 EVALUATING COMPLIANCE.
Compliance to this specification is defined as meeting all requirements, except as specifically
allowed herein. Products submitted as "SCA-Compliant" will be evaluated for compliance in
accordance with the test methods and procedures established per section 7.2.

7.4 REGISTRATION.
Documentation of some elements of an SCA implementation, as defined in sections 3 and 4, will be
submitted to a Registration Body to be established, initially, by the JTRS JPO.

[The establishment, membership, rules, and operation of Registration Bodies are beyond the scope
of the SCA.]

Some elements of an SCA implementation are identified with a UUID. As used in this
specification, the UUID is defined by the DCE UUID standard (adopted by CORBA). (OSF
Distributed Computing Environment, DCE 1.1 Remote Procedure Call) No centralized authority is
required to administer UUIDs (beyond the one that allocates IEEE 802.1 node identifiers [Medium
Access Control (MAC) addresses]).

	INTRODUCTION
	SCOPE.
	COMPLIANCE.
	Joint Technical Architecture Compliance.

	DOCUMENT CONVENTIONS, TERMINOLOGY, AND DEFINITIONS.
	Conventions and Terminology.
	Unified Modeling Language.
	Interface Definition Language.
	eXtensible Markup Language.
	Color Coding.
	Requirements Language.
	CF Interface and Operation Identification.

	Definitions.

	DOCUMENT CONTENT.
	APPLICABLE DOCUMENTS.
	Government Documents.
	Commercial Documents.

	OVERVIEW
	ARCHITECTURE DEFINITION METHODOLOGY.
	ARCHITECTURE OVERVIEW.
	Overview - Software Architecture.
	Bus Layer (Board Support Package).
	Network & Serial Interface Services.
	Operating System Layer.
	Core Framework.
	CORBA Middleware.
	Application Layer.
	Applications.
	Adapters.

	Software Radio Functional Concepts.
	Software Reference Model.
	ModemDevice Functionality.
	NetworkResource and LinkResource Functionality.
	I/ODevice Functionality.
	SecurityDevice Functionality.
	UtilityResource Functionality.

	System Control.

	Networking Overview.
	External Networking Protocols.
	SCA Support for External Networking Protocols.

	Overview - Hardware Architecture.

	O
	OPERATING ENVIRONMENT.
	
	Operating System.
	Middleware & Services.
	CORBA.
	CORBA Extensions.
	Naming Service.

	Log Service.
	Use of Log Service.
	LogService Module�.
	Types.
	LogLevelType.
	ProducerLogRecordType.
	LogLevelSequence.

	Log.
	Description.
	UML.
	Types.
	InvalidParam Exception.
	This paragraph intentionally left blank.
	LogTimeType.
	OperationalStateType.
	AdministrativeStateType.
	AvailabilityStatusType.
	LogFullActionType.
	RecordIDType.
	LogRecordType.
	LogRecordSequence.
	ProducerLogRecordSequence Type.

	Attributes.
	Operations.
	getMaxSize.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setMaxSize.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getCurrentSize.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getNumRecords.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getLogFullAction.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setLogFullAction.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getAvailabilityStatus.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getAdministrativeState.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setAdministrativeState.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getOperationalState.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	writeRecords.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getRecordIdFromTime.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	retrieveById.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	clearLog.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	destroy.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	CORBA Event Service and Standard Events.
	CORBA Event Service.
	StandardEvent Module.
	Types.
	StateChangeCategoryType.
	StateChangeType.
	StateChangeEventType.
	SourceCategoryType.
	DomainManagementObjectRemovedEventType.
	DomainManagementObjectAddedEventType.

	Core Framework.
	Base Application Interfaces.
	Port.
	Description.
	UML.
	Types.
	InvalidPort.
	OccupiedPort.

	Attributes.
	Operations.
	connectPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	disconnectPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	LifeCycle.
	Description.
	UML.
	Types.
	InitializeError.
	ReleaseError.

	Attributes.
	Operations.
	initialize.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	releaseObject.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	TestableObject.
	Description.
	UML.
	Types.
	UnknownTest.

	Attributes.
	Operations.
	runTest.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	PortSupplier.
	Description.
	UML.
	Types.
	UnknownPort.

	Attributes.
	Operations.
	getPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	PropertySet.
	Description.
	UML.
	Types.
	InvalidConfiguration.
	PartialConfiguration.

	Attributes.
	Operations.
	configure.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	query.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Resource.
	Description.
	UML.
	Types.
	UnknownPort.
	StartError.
	StopError.

	Attributes.
	identifier.

	Operations.
	stop.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	start.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	ResourceFactory.
	Description.
	UML.
	Types.
	InvalidResourceId.
	ShutdownFailure.
	CreateResourceFailure.

	Attributes.
	Operations.
	createResource.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	releaseResource.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	shutdown.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Framework Control Interfaces.
	Application.
	Description.
	UML.
	Types.
	ComponentProcessIdType
	ComponentProcessIdSequence
	ComponentElementType
	ComponentElementSequence

	Attributes.
	profile.
	name.
	componentNamingContexts.
	componentProcessIds.
	componentDevices.
	componentImplementations.

	General Class Behavior.
	Operations.
	releaseObject.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	ApplicationFactory.
	Description.
	UML.
	Types.
	CreateApplicationRequestError Exception.
	CreateApplicationError Exception.
	Exception InvalidInitConfiguration

	Attributes.
	name.
	softwareProfile.
	identifier.

	Operations.
	create.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	DomainManager.
	Description.
	UML.
	Types.
	ApplicationInstallationError.
	InvalidIdentifier.
	DeviceManagerSequence.
	ApplicationSequence.
	ApplicationFactorySequence.
	DeviceManagerNotRegistered Exception
	RegisterError.
	UnregisterError.
	ApplicationUninstallationError.
	InvalidEventChannelName.
	AlreadyConnected.
	NotConnected.

	Attributes.
	deviceManagers.
	applications.
	applicationFactories.
	fileMgr.
	domainManagerProfile.
	identifier.

	General Class Behavior.
	Operations.
	registerDeviceManager.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	registerDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	installApplication.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterDeviceManager.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	uninstallApplication.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	registerService.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterService.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	registerWithEventChannel.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterFromEventChannel.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Device.
	Description.
	UML.
	Types.
	InvalidState.
	InvalidCapacity.
	AdminType.
	OperationalType.
	UsageType.

	Attributes.
	usageState.
	adminState.
	operationalState.
	softwareProfile.
	label.
	compositeDevice.

	Operations.
	allocateCapacity.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	deallocateCapacity.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	releaseObject.
	Description.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	LoadableDevice.
	Description.
	UML.
	Types.
	LoadType.
	InvalidLoadKind.
	LoadFail.

	Attributes.
	Operations.
	load.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unload.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	ExecutableDevice.
	Description.
	UML.
	Types.
	InvalidProcess.
	InvalidFunction.
	ProcessID_Type.
	InvalidParameters.
	InvalidOptions.
	STACK_SIZE_ID.
	PRIORITY_ID.
	ExecuteFail.

	Attributes.
	Operations.
	execute.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	terminate.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	AggregateDevice.
	Description.
	UML.
	Types.
	Attributes.
	devices.

	Operations.
	addDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	removeDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	DeviceManager.
	Description.
	UML.
	Types.
	ServiceType.
	ServiceSequenceType.

	Attributes.
	identifier.
	label.
	fileSys.
	deviceConfigurationProfile.
	registeredDevices.
	registeredServices.

	General Behavior.
	Operations.
	registerDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	registerService.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterService.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	shutdown.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getComponentImplementationId.
	Brief Rational.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Framework Services Interfaces.
	File.
	Description.
	UML.
	Types.
	IOException.
	InvalidFilePointer.

	Attributes.
	fileName.
	filePointer.

	Operations.
	read.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	write.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	sizeOf.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	close.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setFilePointer.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	FileSystem.
	Description.
	UML.
	Types.
	UnknownFileSystemProperties.
	fileSystemProperties Query Constants.
	FileInformationType.
	FileInformationSequence.
	FileType.
	CREATED_TIME_ID.
	MODIFIED_TIME_ID.
	LAST_ACCESS_TIME_ID.

	Attributes.
	Operations.
	remove.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	copy.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	exists.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	list.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	create.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	open.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	mkdir.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	rmdir.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	query.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	FileManager.
	Description.
	UML.
	Types.
	MountType.
	MountSequence.
	NonExistentMount.
	MountPointAlreadyExists.
	InvalidFileSystem.

	Attributes.
	Operations.
	mount.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unmount.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getMounts.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	File System Operations.
	query.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Timer.

	Domain Profile.
	Software Package Descriptor.
	Software Component Descriptor.
	Software Assembly Descriptor.
	Properties Descriptor.
	Device Package Descriptor.
	Device Configuration Descriptor.
	Profile Descriptor
	DomainManger Configuration Descriptor.

	Core Framework Base Types.
	Data Type.
	DeviceSequence.
	FileException.
	InvalidFileName.
	InvalidObjectReference.
	InvalidProfile.
	OctetSequence.
	Properties.
	StringSequence.
	UnknownProperties.
	DeviceAssignmentType.
	DeviceAssignmentSequence.
	ErrorNumberType.

	APPLICATIONS.
	General Application Requirements.
	OS Services.
	CORBA Services.
	CF Interfaces.

	Application Interfaces.
	Service APIs.
	Service Definitions.
	API Transfer Mechanisms.

	LOGICAL DEVICE.
	OS Services.
	CORBA Services.
	CF Interfaces.
	Profile

	GENERAL SOFTWARE RULES.
	Software Development Languages.
	New Software.
	Legacy Software.

	HARDWARE ARCHITECTURE DEFINITION
	BASIC APPROACH.
	CLASS STRUCTURE.
	Top Level Class Structure.
	HWModule(s) Class Structure.
	Class Structure with Extensions.
	RF Class Extension.
	Modem Class Extension.
	Processor Class Extension.
	INFOSEC Class.
	I/O Class Extension.

	Attribute Composition.

	DOMAIN CRITERIA.
	PERFORMANCE RELATED ISSUES.
	GENERAL HARDWARE RULES.
	Device Profile.
	Hardware Critical Interfaces.
	Interface Definition.
	Interface Standards.
	Interface Selection.

	Form Factor.
	Modularity.

	SECURITY ARCHITECTURE DEFINITION
	ADDITIONAL CF SECURITY REQUIREMENTS.
	Application.
	ApplicationFactory.
	DomainManager.

	COMMON SERVICES AND DEPLOYMENT CONSIDERATIONS
	COMMON SYSTEM SERVICES.
	OPERATIONAL AND DEPLOYMENT CONSIDERATIONS.

	ARCHITECTURE COMPLIANCE
	CERTIFICATION AUTHORITY.
	RESPONSIBILITY FOR COMPLIANCE EVALUATION.
	EVALUATING COMPLIANCE.
	REGISTRATION.

