
SCA Developer’s Guide
 Appendix E

SCA Developer’s Guide

APPENDIX E

XML for a Sample Device

03/28/2002

SCA Developer’s Guide
 Appendix E

 E-1

Introduction
This appendix provides the XML for a fictitious device. The device serves no real purpose,
other than to show the inter-relation between the various profile files. Each profile contained
in this document is preceded by a brief discussion explaining what it contains and how its
contents are organized. The explanations of this appendix assume familiarity with the
contents of Appendix A, which explains some of the basic concepts of XML.

Due to the variability of the DTDs, there are numerous methods of defining a device.
For example, in the software package descriptor, there can exist one-to-many author
elements. However, within the author element, there can exist zero-to-many sub-elements
(name, company, webpage). So, the sample XML provided here will not stray far from the
elements that are shown as mandatory in the respective DTDs. The commentary in this
appendix applies only to the options demonstrated in the example XML. No attempt is made
to cover the various other options available, but using the other capabilities does follow the
same patterns demonstrated in these examples.

Line numbers are provided for each XML file listed in this appendix. Line numbers are not
part of XML structure, but they are included in this appendix as a means of readily
identifying and/or locating the various components of the file.

SCA Developer’s Guide
 Appendix E

 E-2

Properties File - device_xyz.prf.xml
A properties file describes component attributes.

The purpose of this file is to specify one “readonly” property – the available capacity.
This property is of type “allocation”, and is used to indicate whether the device is available.

The first two lines of this file are the prolog, which is explained on page A-6 of Appendix A.
DTD file properties.2.2.dtd embodies the Properties Descriptor requirements (specified in
section D.4 of Appendix D to the SCA 2.2 Specification).

Lines 4 and 21 provide the start tag and corresponding end tag that enclose the root element
for the XML file. The following child elements are contained within the root element:

?? description {lines 6-8} is a character string of information about the file

?? A "simple" element is one way of defining a component attribute1. device_xyz.prf.xml

contains one simple element {lines 10-19 define "Available Capacity"}
Within the simple start tag, element attributes may be defined in any order.

 * mode {line 11}may be "readonly", "writeonly", or "readwrite".

 * id {line 12}is the formal identifier for the component attribute. Since this
 attribute is used in allocation {see line 18} the id is a DCE UUID.

 * type {line 13}denotes how the value is handled by the software.
 A type of "boolean" means that the value must be either 0 or 1; in this setting,
 these values are interpretted as meaning "in use" or "available", respectively.

 * name {line14} may be used, by a GUI for example, to identify the component
 attribute in a more user- friendly manner

 A "simple" element may have child elements.

 * description {line 16} is a character string of information about the component
 attribute

 * value {line 17} provides an initial value for the component attribute;
 as is noted above in the explanation of "type", the initial value of '1' means that
 the device is available initially.

 * kind {line 18} denotes how the component attribute is used;
 "allocation" is the normal use of an attribute for a device component.

1 If it is not "simple", an attribute is "simp lesequence", "test", "struct", or "structsequence", but this device
happens to use only "simple".

SCA Developer’s Guide
 Appendix E

 E-3

<?xml version="1.0" ?> 1
<!DOCTYPE properties SYSTEM “properties.2.2.dtd”> 2
 3
<properties> 4
 5
 <description> 6
 This is the property file (.prf) called out by the XYZ device's SPD (device_xyz.spd.xml) 7
 </description> 8
 9
 <simple 10
 mode="readonly" 11
 id="DCE:F364A632-5F0E-11d4 -8164-00508B6A52E6 " 12
 type="boolean" 13
 name="Available Capacity"> 14
 15
 <description>This property indicates the available capacity for this device</description> 16
 <value>1</value> 17
 <kind kindtype="allocation" /> 18
 </simple> 19
 20
</properties>21

SCA Developer’s Guide
 Appendix E

 E-4

Software Component Descriptor for Device - device_xyz.scd.xml
The software component descriptor describes the interfaces associated with an
SCA-compliant component.

Each interface is uniquely identified by using a CORBA respository identifier, which consists
of three parts: the prefix "IDL", a scoped type name, and a version number. Thus, for example, the
CF::Device interface defined by version 2.2 of the SCA is identified as "IDL:CF/Device:2.2".

The first two lines of this file are the prolog, which is explained on page A-6 of Appendix A.
DTD file softwarecomponent.2.2.dtd embodies the Software Component Descriptor
requirements (specified in section D.5 of Appendix D to the SCA 2.2 Specification).

Lines 4 and 63 provide the start tag and corresponding end tag that enclose the root element
for the XML file. The following child elements are contained within the root element:

?? corbaversion {line 6} indicates the version of CORBA that the delivered component

suppports.

?? componentrepid {line 8} identifies which interface the component implements.

A device must implement CF::Device, an application must implement CF::Resource, and
an application factory must implement CF::ResourceFactory. Thus, the repid for this
element always identifies CF::Device, CF::Resource, CF::ResourceFactory, or an
interface which inherits one of these interfaces2, even though the component may
implement other interfaces also.

?? componenttype {line 10} for the fictitious device device_xyz is "device". Other valid

values are "resource", "resourcefactory", "domainmanager", "log", "filesystem",
"filemanager", "devicemanager", "eventservice", and "namingservice".

?? componentfeatures {lines 12-42} has a child element named ports {lines 14-40}, which

has a "provides" child element for each provides port and a "uses" child element for each
uses port.

Each provides port {lines 16-20 and 22-26} has two element attributes and one optional
child element

 repid is the name that uniquely identifies the interface realized at that port (it should
 match the repid of the corresponding interfaces element - see lines 44-61)

 providesname is the port identifier (it should match some providesidentifier child
 element of a connectinterface element in the appropriate SAD file).

2 For this device, componentrepid identifies CF::ExecutableDevice, which inherits from CF::Device.

SCA Developer’s Guide
 Appendix E

 E-5

 Optional child element porttype can be "control", "data", "responses" or "test".

Each uses port {lines 28-32 and 34-38} has two element attributes and one optional child
element

 repid is the name that uniquely identifies the interface realized at that port (it should
 match the repid of the corresponding interfaces element - see lines 44-61)

 usesname is the port identifier (it should match some usesidentifier child element
 of a connectinterface element in the appropriate SAD file).

 Optional child element porttype can be "data", "control", "responses" or "test".

For example, the repid on line 17 matches the repid on line 47.

For both provides and uses ports, porttype defaults to "control" if the element is
omitted. In general, porttype corresponds to interface types specified by the API
Supplement 3 - "control" corresponds to an API "B" (non-real-time) interface and "data"
corresponds to an API "A" (real-time) interface.

?? interfaces {lines 44-61} has an interface child element for each interface that the

component provides, uses, or supports. repid is the name that uniquely identifies the
interface. name provides a character-based non-qualified (i.e., "user- friendly") way of
identifying the interface.

3 see Section 3 of the SCA Developer's Guide

SCA Developer’s Guide
 Appendix E

 E-6

<?xml version="1.0" ?> 1
<!DOCTYPE softwarecomponent SYSTEM “softwarecomponent.2.2.dtd”> 2
 3
<softwarecomponent> 4
 5
 <corbaversion>2.2</corbaversion> 6
 7
 <componentrepid repid=" IDL:CF/ExecutableDevice:2.2" /> 8
 9
 <componenttype>device</componenttype> 10
 11
 <componentfeatures> 12
 13
 <ports> 14
 15
 <provides 16
 repid=" IDL:CF/ExecutableDevice:2.2" 17
 providesname="device_in_port" /> 18
 <porttype type="control"/> 19
 </provides> 20
 21
 <provides 22
 repid=" IDL:IOAPI/UserProvider_AnalogAudio:2.2" 23
 providesname="audio_in_port" /> 24
 <porttype type="data"/> 25
 </provides> 26
 27
 <uses 28
 repid=" IDL:IOAPI/UserProvider_AnalogAudio:2.2" 29
 providesname="audio_out_port" /> 30
 <porttype type="data"/> 31
 </uses> 32
 33
 <uses 34
 repid=" IDL:LogService/Log:2.2" 35
 usesname="log_out_port" /> 36
 <porttype type="data"/> 37
 </uses> 38
 39
 </ports> 40
 41
 </componentfeatures> 42
 43
 <interfaces> 44
 45
 <interface 46
 repid=" IDL:CF/ExecutableDevice:2.2" 47
 name=" ExecutableDevice"> 48
 </interface> 49
 50
 <interface 51
 repid=" IDL:LogService/Log:2.2" 52
 name=" Log"> 53

SCA Developer’s Guide
 Appendix E

 E-7

 </interface> 54
 55
 <interface 56
 repid=" IDL:IOAPI/UserProvider_AnalogAudio:2.2" 57
 name="AudioUserProvider"> 58
 </interface 59
 60
 </interfaces> 61
 62
</softwarecomponent>63

SCA Developer’s Guide
 Appendix E

 E-8

Software Package Descriptor for Device - device_xyz.spd.xml
This software package descriptor is used to load an SCA-compliant component.

The first two lines of this file are the prolog, which is explained on page A-6 of
Appendix A. DTD file softpkg.2.2.dtd embodies the Software Package Descriptor
requirements (specified in section D.2 of Appendix D to the SCA 2.2 Specification).

Lines 4 and 53 provide the start tag and corresponding end tag that enclose the root element
for the XML file. The id element attribute {line 5} is a DCE UUID that uniquely identifies
the component, and is used elsewhere in the system to locate this particular component.
The name element attribute {line 6} is a user- friendly means of identifying the component,
and the type element attribute {line 7} specifies that the device does meet SCA requirements.

The following child elements are contained within the root element:

?? author {lines 9-11} is used to provide information about the person(s) who wrote the

XML; no requirements limit what can be entered in the child elements of author.

?? description {line 13} is a character string of information about the file.

?? propertyfile {lines 15-17} specifies which particular property file should be used with

this device; line 16 specifies that the file presentted on pages E-2 and E-3 of this
appendix should be used with the implementation described in this file.

?? descriptor {lines 19-21}specifies which Software Component Descriptor provides

interface information for the component being loaded; line 20 specifies that the file
presented on pages E-4 through E-7 of the appendix provides interface for the component
loaded through the use of this file.

?? implementation {lines 23-51}describes a particular implementation of the device.

The id element attribute {line 24} is a DCE UUID that uniquely identifies the particular
implementation of the component, and is used elsewhere in the system to locate this
implementation. The aepcompliance element attribute {line 25} states that the software for
this implementation does meet the requirements specified in Appendix B to the SCA 2.2
Specification. 4

The description child element {lines 27-29} is a character string of information about the
implementation.

The code child element {lines 31-35} describes the instructions that provide the
functionality of this implementation. The type element attribute {line 32} can be
"Executable" (a main process to be loaded and executed), "KernelModule" (load only),

4 Software which meets the requirements specified in "Appendix B: SCA Application Environment Profile"
attain a desired level of portability.

SCA Developer’s Guide
 Appendix E

 E-9

"SharedLibrary" (dynamically linked) or "Driver" (load only). Child element loadfile
{line 29} specifies the file containing the actual code, and entrypoint {line 30} specifies
where execution should begin (if that information is needed in the context in which the
code will be used5).

A dependency child element describes other resources that are needed by this device.
If either of these dependencies cannnot be satisfied, the rest of the device load will not be
carried out.

The first dependency {lines 37-42} refers to the system resource "deployment MIPS";
the name implies that it is processing power, but it could be anything. The propertyref
child element references a simple allocation property, such as the one described on lines
10-19 of file device_xyz.prf.xml on page E-3 of this Appendix. The property is
identified by matching the DCE UUID specified by refid {line 40}, and value {line 41}
reports how many units of the property are needed. This dependency will cause the
specified resource to be allocated to this device.

The second dependency {lines 44-49} refers to additional software. The localfile name
{line 47} within the softpkgref references another software package descriptor (in this
case, it is the file presented on pages E-11 and E-12 of this appendix) that will describe
the software. This dependency will cause the specified software to be loaded.

5 For example, if the operating system is LynxOS, the entrypoint is understood to be ‘main’, so this information
need not be provided in an SPD that will be used with LynxOS.

SCA Developer’s Guide
 Appendix E

 E-10

<?xml version="1.0" ?> 1
<!DOCTYPE softpkg SYSTEM “softpkg.2.2.dtd”> 2
 3
<softpkg 4
 id="DCE:F364A623-5F0E-11d4 -8164-00508B6A52E6 " 5
 name=" Logical XYZ Device" 6
 type="sca_compliant"> 7
 8
 <author> 9
 <company>XYZ Company</company> 10
 </author> 11
 12
 <description>Software Package for the logical XYZ Audio device</description> 13
 14
 <propertyfile> 15
 <localfile name=" device_xyz.prf.xml" /> 16
 </propertyfile> 17
 18
 <descriptor> 19
 <localfile name=" device_xyz.scd.xml" /> 20
 </descriptor> 21
 22
 <implementation 23
 id="DCE:F364A636-5F0E-11d4 -8164-00508B6A52E6 " 24
 aepcompliance="aep_compliant"> 25
 26
 <description>This is an implementation for a logical component on a xyz processor using xyz 27
 operating system 28
 </description> 29
 30
 <code 31
 type="Executable"> 32
 <localfile name="xyz_device.out" /> 33
 <entrypoint>xyzDeviceServer</entrypoint> 34
 </code> 35
 36
 <dependency 37
 type="deployment MIPS"> 38
 <propertyref 39
 refid="DCE:F364A630-5F0E-11d4 -8164-00508B6A52E6 " 40
 value="50" /> 41
 </dependency> 42
 43
 <dependency 44
 type="software dependency"> 45
 <softpkgref> 46
 <localfile name=" device_xyz_dep1.spd.xml" /> 47
 </softpkgref> 48
 </dependency> 49
 50
 </implementation> 51
 52
</softpkg>53

SCA Developer’s Guide
 Appendix E

 E-11

Software Package Descriptor for Dependency - device_xyz_dep1.spd.xml
This software package descriptor is used to load a component that is required by the
component that was presented on pages E-8 through E-10 of this appendix.

The first two lines of this file are the prolog, which is explained on page A-6 of
Appendix A. DTD file softpkg.2.2.dtd embodies the Software Package Descriptor
requirements (specified in section D.2 of Appendix D to the SCA 2.2 Specification).

Lines 4 and 32 provide the start tag and corresponding end tag that enclose the root element
for the XML file. The id element attribute {line 5} is a DCE UUID that uniquely identifies
the component. The name element attribute {line 6} is a user-friendly means of identifying
the component, and the type element attribute {line 7} specifies that the software does not
meet SCA requirements.

The following child elements are contained within the root element:

?? title {line 9} provides a user- friendly way of identifying the interface.

?? author {lines 11-13} is used to provide information about the person(s) who wrote the

XML; no requirements limit what can be entered in the child elements of author.

?? implementation {lines 15-30}describes a particular implementation of the software.

The id element attribute {line 16} is a DCE UUID that uniquely identifies the
implementation of the software. The aepcompliance element attribute {line 17} states that
the software for this implementation does meet the requirements specified in Appendix B
to the SCA 2.2 Specification. 6

The code child element {lines 19-22} describes the instructions that provide the
functionality of this implementation. The type element attribute {line 20} can be
"Executable" (a main process to be loaded and executed), "KernelModule" (load only),
"SharedLibrary" (dynamically linked) or "Driver" (load only). Child element localfile
{line 21} specifies which file contains the actual code..

The dependency child element {lines 24-28} refers to the system resource "deployment
MIPS"; the name implies that it is processing power, but it could be anything.
The propertyref child element references a simple allocation property, such as the one
described on lines 10-19 of file device_xyz.prf.xml on page E-3 of this Appendix. The
property is identified by matching the DCE UUID specified by refid {line 26}, and value
{line 27} reports how many units of the property are needed. . This dependency will
cause the specified resource to be allocated to this software. The software will not be
loaded if the dependencies cannot be satisfied.

6 Software which meets the requirements specified in "Appendix B: SCA Application Environment Profile"
attain a desired level of portability.

SCA Developer’s Guide
 Appendix E

 E-12

<?xml version="1.0" ?> 1
<!DOCTYPE softpkg SYSTEM “softpkg.2.2.dtd”> 2
 3
<softpkg 4
 id="DCE:8BF71881-790B-11d4-816B-00508B6A52E6 " 5
 name="XYZ Dependency File" 6
 type="sca_non_compliant"> 7
 8
 <title>Dependency Component</title> 9
 10
 <author> 11
 <company>Devices-R-Us</company> 12
 </author> 13
 14
 <implementation 15
 id="DCE:8BF71882-790B-11d4-816B-00508B6A52E6 " 16
 aepcompliance="aep_compliant"> 17
 18
 <code 19
 type="Driver"> 20
 <localfile name="xyz_dependency1.o" /> 21
 </code> 22
 23
 <dependency type=" deployment MIPS"> 24
 <propertyref 25
 refid="DCE:F364A630-5F0E-11d4 -8164-00508B6A52E6 " 26
 value="10" /> 27
 </dependency> 28
 29
 </implementation> 30
 31
</softpkg>32

