Joint Tactical Radio System (JTRYS)
SCA Developer’s Guide

Contract No. DAAB15-00-3-0001
Document Number: Rev 1.1

18 June 2002

Prepared for the
Joint Tactical Radio System (JTRYS)
Joint Program Office

Prepared by:

Raytheon

Raytheon Company
Radios and Terminals
1010 Production Road
Fort Wayne, In 46808

Joint Tactical Radio System (JTRYS)
SCA Developer’s Guide

Contract No. DAAB15-00-3-0001
Document Number: Rev 1.1

18 June 2002

Prepared for the
Joint Tactical Radio System (JTRS)
Joint Program Office

Prepared by:

Raytheon

Raytheon Company
Radios and Terminals
1010 Production Road
Fort Wayne, In 46808

P ed B ‘
repared By e i W a/@ Date: ©/2/ / 2002
Randy Hess GQANLO \\\QM Date: ‘QLlJJ_lm}_

~s

Program Manager) '
James Brown / i T_%/Lsn e Date: % [2.1 ZIZQ 07
Software Quality Assurance . A
Brian Ault ~ Date: & -2/ 03~

1

SCA Developer's Guide Rev 1.1

INTRODUGCTION ... 4
L1 SCOPE. iR bbb 4
1.2 TERMINOLOGY ..ocuierieuiuerereetesesesseseesestesesessssesesessssasessssssesesessesasessssssesensssssenssessesensssssesesessesasensssssensnsssssenesessens 4

SCA OVERVIEW ...ttt s e bbbt
2.1 INTRODUCTION......cocunee

2.2 ARCHITECTURE DEFINITION METHODOLOGY
2.3 ARCHITECTURE OVERVIEW
2.4 FRAMEWORK INTERFACES

241 DomainManager

242 ApplicationFactory

243 Application

244 1 PP

245 FileSystem

24.6 L LY = g o T 11
2.5 BASE APPLICATION INTERFACES....ccottrtttreustreatressssessesessesssessssssssssssssssssssssssssassssssssssssssssssssesssssssssssssssns 11

251

252 =Y =TT 13

253 Q=S = o] 1= o o TR 13

254 PortSupplier

255 PrOPEITYSEL.....coeicieecteec e e e

25.6 RESOUICE ...ttt

25.7 Resour ceFactory
2.6 SERVICE INTERFACES......cttotuetetreriettetresesseesesessssssesesssssessesssssssessssssssesssssesssssssssssenssssesssenssnsasssnssssssssnssesasns
261 NAMING SEIVICE ...ttt e et r b
26.1.1 Useof Naming Service

2.6.2 LOQ SEIVICE. ..ottt
2621 Useof LOQ SEIVICE.....coeivieirieiei e
2.6.3 CORBA Event Service
2.6.3. 1 USE Of EVEME SEIVICE. .. .ottt ettt st et b e e b e se et es e s esesee e nteaseneeean

APPLICATION PROGRAM INTERFACE (API) OVERVIEW ... eseeeeees 24
3.1 GENERIC PACKETS ittt sttt bbbt bbbttt s bbb s st et s s st s s s anbebnnas
B2 PHYSICAL APl ettt sttt ettt sttt b st n s an e b s e

321 PhySICal REAI TIME ..oviicicieiec ettt bbb s s s b b s

322 Physical Non-Real Time
3.3 MEDIUM ACCESS CONTROL (MAQC) APl ...ooiiirerrisstssests st ssessssssssesss s sssssesssssssssssssssssesssens 26
3.4 LOGICAL LINK CONTROL APl ...ociiiriisiririssieiressssietsssssssssessssssssssesssssesssssssssssssssssessssssssessssssssssssssssesssnsnss 26
G 1 T 1@ N . PP 26

DOMAIN PROFILE COMPONENTS......oovienreenrieesisesstsesssessnsens 27
4.1 SOFTWARE PACKAGE DESCRIPTOR.....ceuriereseresseressssssssssssssssessssesssesnss 28
4.2 PROPERTIES DESCRIPTOR....cruttsuustreseressessssessssessesessessssssssessssessssesssssssssssssssssssssssssssssssesssssssssssssssssessssesnes 29
4.3 SOFTWARE COMPONENT DESCRIPTOR.....cceustereieresreresseressesesesssssssssessesssessssesnes 30
4.4 SOFTWAREASSEMBLY DESCRIPTOR.
45 PROFILE DESCRIPTOR......cciietttiiuiuetetsessstessssssstessssssssessssssssessssssssessssssssssassssssssesssssstessssssssesssssssesssssssesssssnns

DESIGN PROGRESSION ..ottt ssssssesesss st ss st sssssssessssssssessssssssesssssassesssssssesssenss 33
B.1 DL MODELING....cuitcttetrtsietetstsesssstessessssssssssssstessssssssesesssassessssssssessssssssssasssnssssessssssstessssssssessssnssesssssssessssnns 3
5.2 DL GENERATION .ccietstcuetetstsescsstessessssssssssssssessssssssesasssssssssssssssessssssssssassnssssessssssssesssssssesssssssessssssssesssnsaes 4
5.3 | DL COMPILATION ...otiuruetreeestessesssseesssssssssssssssssessssesssssesssssssssssssssssessssssssessssssssssssssssessssssssesassssssesssssssessens 35
54 CLIENT/SERVER COMPILATION ..ctetiusiseetreessssssssessssssssssssssssssssssesssssssessssssssssssssssessssssssesasssssesssssssesssns 36
5.5 REVERSE ENGINEERING......ccsstutertetsisssereressssssssesssssessssssssssssssssssssssesssssesssssssssssssssssessssssssesssssssssssssssesssssnes 36

Raytheon Page 1 of 78

SCA Developer's Guide Rev 1.1

5.6 CREATION OF SERVANT IMPLEMENTATION CLASSES.......cocviiieiinieistssessssss st sesss s sasssssns 37
5.7 SERVANT CODE GENERATIONcoiitiitiitmtsmsnsssssssssssssss st ssssssssssssssss st sssanes 38
5.8 XML GENERATION ..ottt sttt sssssssssssss s bbb bbb sss s bbbt ss st sasssanes 40

6 WAVEFORM DEVELOPMENT ..ot s ssssne s nsns 40
6.1 FUNCTIONAL ALLOCATION TOAPI DESIGNocuiuiueirieieieieieieieieieseieieiesessss st sesssesesssssesesssssesesssssesenas

6.1.1
6.1.2
6.1.2.1
6.1.2.2
6.1.2.3
6.1.3
6.1.4

INErOAUCTION...eoee s
Identifying Application Functionality....................
Data and Control from Attached Device..................
Data and Control to Attached Device............c.c.......
Control from User Interface (U1)coeveevrrrevcnenee
Functional APl Mapping.......cocreemneeemnseneeenens
Mapping Remaining Needs...........ccccoeeeereeerenennns

6.2 BUILDING APl LAYER DEFINITIONS......cuetteuiueierereuetetereserereresesesesesesesesessssesesssesesesssssesesssesesesssssesssssesenanas

6.2.1
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.2.2.4
6.2.2.5
6.2.2.6
6.2.3
6.2.3.1
6.2.3.2
6.2.4
6.2.4.1

6.2.5

6.3 REFINING APl DEFINITIONSWITH IMPLEMENTATION DESGN

6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.14

6.3.2
6.3.2.1
6.3.2.2

6.3.3

6.34

6.3.5

gL oo [0t o] o OO OOV OPT
Waveforms with Physical Layerc.cccocoevveevenne
Using Concrete Service Groupoeeererveeeeneneens
Instantiating Generic Building Block
EXIENAING A SEIVICE GIOUP ...c.veueieienirieieieriesisie sttt et et st e b see e sbeseeaesee e ebeseenesbe e eneseenesnans
Constructing A New Service Groupccceeeevveeeeresesieiennens
Combining Service Groupsto Form A New Interface
Completing the Waveform INLErfaCe.o
WaVEfOrMS With IMAC LAYETccueueieieieieisisisisisisessssssessssss et sss st ss st sasssssssssssssssssssssssssssssnsnes
Explanation of the Taskcccverrennienieinenenens
Solution Using MAC Building Block(s)
WaveforMS With LINK LAYEc.ccvceerierieeeieesi s saes
Explanation of the Task

ASSEMDIYCONITOIEF ...ttt se s s s e et s e s

USE Of INLEIfACES......ecereeireeireeeireerreereeeee e
Implementing A Provides Port
IMPIEMENLING A USES POIT.......ceieiiieceriet et
Implementing MUITIPIE POITS.........coi ettt see e
Implementing getPort().........ccoeeeverrennieneireneeens

Model for Physical Layer
UNITIEO DESION etttk b ettt b ettt
PartitiONEa DESIGN ... ettt b e R et R e e

Model for MAC Layer

Model for Link Layer.......

Model for AssemblyController

7 DEVICE CREATION oot s b b 64

7.1 DEVICE INTERFACES ...ttt s bbb bbb bbb bbb bbb bbb bbb b bbb e b e b bbb b n e bbb enenas

711
712
7.13
714
7.15
7.1.6
7161
7.1.6.2
7.16.3

ExecutableDevice
AQQrEJALED EVICE.......ceveeeee ettt e
DEVICEMABNAGETvureeerreaerrese sttt e es bbbttt
Defining the Device
Selecting the Appropriate DeviCe INTEITACE.ciieiiie et 69
DeSIgNING A DEVICE SENVANEccvceiiiicieciciitesee ettt sttt b st saebesre et e saenesbe e enesaenearens
Device Configuration Descriptor

7.2 DEVICE PACKAGE DESCRIPTOR......cucutteteueteteteueteteresetetesesesetesesesesesesesesesesesssesesssesesesesesesesssesesesssesesesesesesenns
7.3 DOMAINMANAGER CONFIGURATION DESCRIPTOR......c.ccttueueieiereieieieieieisieseasssiesenssstesesesesesesesssesesssssesenas 75

8 Ul DISCUSSION ...t s s 76

8.1 INTRODUGCTION.....ccututueueieteueueteresetetesasesesebesesesabesesasabesesesasesesesasasanas 76
8.2 DIRECT CORBA LINKS ...ttt bbb s 76

Raytheon

Page 2 of 78

8.3

9 APPENDICES

9.1
9.2
9.3
94
9.5

Raytheon

SCA Developer's Guide Rev 1.1

NON-DIRECT CORBA LINKSooviitieteiistintests sttt ss bbb 7

... 78
APPENDIX A — XML INTRODUCTION.....covitritrirrmrnsnssnes 78
APPENDIX B—IDL FORXYZ WAVEFORM PHYSICAL LAYER.....ocovrnntretnnsntsesssieessansss s sssssssssens 78
APPENDIX C—HEADER FILESFOR XYZ WAVEFORM PHYSICAL LAYER.......cooiieeeieecccane 78

APPENDIX D — XML FOR A SAMPLE WAVEFORM
APPENDIX E— XML FOR A SAMPLE DEVICE

Page 3 of 78

SCA Developer's Guide Rev 1.1

1 Introduction

This Developer’s Guide provides design guidelines for devel oping compliant waveform applications and
devices for the Software Communications Architecture (SCA) published by the Joint Tactical Radio
System (JTRS) Joint Program Office (JPO). Thisguideis organized as follows:

an overview of the SCA and its services
application program interface (API) overview
domain profile discussion

design progression

waveform devel opment

device creation

user interface

appendices

B TN, N, i S O, T

This guide also contains working examples of IDL (Interface Definition Language) and XML (eXtensible
Markup Language). This document isintended to be aliving document that is to be updated as necessary
to reflect the current version of the SCA.

1.1 Scope

Thisguideiswritten for users devel oping SCA -compliant waveforms and/or devices. A software
framework is defined in the SCA, and is comprised of:

a Portable Operating System Interface (POSIX)-compliant Operating System (OS)
adistributed computing middleware, CORBA

a set of open-software interfaces geared toward embedded distributed communications systems, Core
Framework (CF)

NN N

These three elements make up the SCA Operating Environment (OE).

We have assumed that the reader has some knowledge of the SCA. Further, we assume that the reader has
ahigh degree of experience with object-oriented design, CORBA, UML, and high-level languages. Coding
examples are provided using the C++ programming language. A brief definition of some of the concepts
and terms used in this document is found in the next section.

1.2 Terminology

There are a number of terms used throughout this document — some of the more essential are explained at
thistime.

OMG (Object Management Group) — In 1989, the OMG was formed to address the problems of developing
portable distributed applications for heterogeneous systems. It is now the world’ s largest software
consortium, with more than 800 members. Two key specifications produced by the OMG, the OMA
(Object Management Architecture) and its core, the CORBA specification, provide aflexible architectural
framework that accommodates awide variety of distributed systems.

CORBA (Common Object Request Broker Architecture) provides platform-independent programming
interfaces and models for portabl e distributed-oriented computing applications. CORBA isthe middleware
of the SCA OE. Itsindependence from programming languages, computing platforms, and networking
protocols makesit highly suitable for the development of new applications and their integration into
existing distributed systems. CORBA has associated with it some unique terminology; the most important
of which is explained in the following list.

Raytheon Page 4 of 78

SCA Developer's Guide Rev 1.1

3

A CORBA object isa“virtual” entity capable of being located by an ORB and having client requests
invoked onit. Itisvirtual inthe sensethat it does not really exist unlessit is made concrete by an
implementation written in a programming language.

A target object, within the context of a CORBA request invocation, isthe CORBA object that isthe
target of that request.

A client isan entity that invokes arequest on a CORBA object.

A server is an application in which one or more CORBA objects exist.

A request is an invocation of an operation on a CORBA object by aclient.

An abject reference, also known as an |OR (Interoperable Object Reference) is ahandle used to
identify, locate, and address a CORBA object.

A servant is a programming language entity that realizes (i.e., implements) one or more CORBA
objects. Servants are said to beincarnate CORBA objects because they provide bodies, or
implementations, for those objects. Servants exist within the context of a server application. In C++,
servants are object instances of aparticular class.

333 3

3

IDL (Interface Definition Language) — The OMG IDL is CORBA’s fundamental abstraction mechanism
for separating object interfaces from their implementations. OMG IDL establishes a contract between
client and server that describes the types and object interfaces used by an application. Thisdescriptionis
independent of the implementation language, so it does not matter whether the client is written in the same
language as the server.

IDL Definitions are compiled for a particular implementation language by an IDL compiler. The compiler
tranglates the language-independent definitionsinto language-specific type definitions and APIs
(Application Program Interface). These type definitions and APIs are used by the devel oper to provide
application functionality and to interact with the ORB. The translation algorithms for various
implementation languages are specified by CORBA and are known as language mappings. CORBA
defines a number of language mappings including those for C++, Ada, and Java (along with many others).

An IDL compiler produces source files that must be combined with application code to produce client and
server executables'. Details, such as the names and numbers of generated source files, vary from ORB to
ORB. However, the concepts are the same for all ORBs and implementation languages. The outcome of
the development processis a client executable and a server executable. Section 5 provides more detail.

UML (Unified Modeling Language) is a standard (modeling) language for writing software blueprints?.
UML enables system buildersto create blueprints that capture their visionsin a standard, easy-to-
understand way and communicate them to others. It may be used to visualize, specify, construct, and
document the artifacts of a software-intensive system. The UML ismore than just a graphical language.
Rather, behind every part of its graphical notation there is a specification that provides atextual statement
of the syntax and semantics of that building block. For example, behind a classicon is a specification that
provides the full set of attributes, operations (including their full signatures), and behaviors that the class
embodies; visually, that classicon might only show asmall part of this specification. UML diagrams are
used in numerous ways— here, however, we focus on two: to specify models from which an executable
system is constructed (forward engineering) and to reconstruct models from parts of an executable system
(reverse engineering).

1 « Advanced CORBA Programming With C++” (Addison-Wesley Professional Computing) Henning &
Vinoski

2 «The Unified Modeling Language User Guide” (Addison Wesley) Grady Booch, James Rumbaugh, Ivar
Jacobson, p13

Raytheon Page 5 of 78

SCA Developer's Guide Rev 1.1

XML (eXtensible Markup Language) is a markup language designed specifically for delivering
information over the World Wide Web. XML is used within the SCA to define aprofile for the domainin
which waveform applications can be managed. XML’s definition consists of only a bare-bones syntax’.
When you create an XML document, rather than use alimited set of predefined elements, you create your
own elements and assign them any names you like — hence the term extensible. Y ou can therefore use
XML to describe virtually any type of document, from amusical score to adigitally-programmable radio.
However, for JTRS, this extensibility islimited to the SCA -defined Document Type Definitions (DTDs).
A DTD providesalist of the elements, attributes, notations, and entities contained in adocument, as well as
their relationship to one another. DTDs specify a set of rulesfor the structure of adocument. The DTD
defines exactly what is allowed to appear inside adocument. Appendix A provides an introduction to
XML. SCA 2.2 Attachment 1 To Appendix D of the SCA containsthe JTRS DTDs.

2 SCA Overview

2.1 Introduction

This section provides an overview of the SCA with emphasis on the Core Framework (CF) Base
Application, Framework Control, and Framework Services Interfaces. The CF is the essential (“core”) set
of open application-layer interfaces and services that provide an abstraction of the underlying software and
hardware layers for software application designers. The CF consists of:

?? Base Application Interfaces (Port, LifeCycle, TestableObject, PropertySet, PortSupplier,
Resour ceFactory, and Resource) that can be used by all software applications

?? Framework Control Interfaces (Application, ApplicationFactory, DomainManager, Device,
LoadableDevice, ExecutableDevice, AggregateDevice and DeviceManager) that provide control of the
system

?? Framework Services Interfaces (File, FileSystem, FileManager) that support both core and non-core
applications, and

?? A Domain Profile that describes the properties of hardware devices (Device Profile) and software
components (Software Profile) in the system.

The SCA is not a system specification, asit isintended to be implementation independent, but a set of rules
that constrain the design of systems. The OE, consisting of the Core Framework, CORBA middleware, and
OS, imposes design constraints on waveform and other applications to provide increased portability of

those applications from one SCA -compliant radio platform to another. These design constraints include
specified interfaces between the Core Framework and application software, and restrictions on waveform
usage of Operating System APIs.

The SCA also provides a building block structure (defined in the APl Supplement) for defining application
software component APIs. The building-block structure for API definition facilitates component-level
reuse and allows significant flexibility for devel opersto define waveform-specific APIs.

3uxML Step By Step” (Microsoft Press) Micheal J. Y oung, p7

Raytheon Page 6 of 78

SCA Developer's Guide Rev 1.1

2.2 Architecture Definition Methodology.

The architecture has been devel oped using an object-oriented approach depicted with UML diagrams.
Color-coding is used to differentiate between architecture elements and applications in diagrams as shown
inFigures2.3-1and 2.3-2.

Core Framework (CF) elements
Commercial-Off-The-Shelf (COTS) components
Host Applications

Red Side Network and Link Applications
Security Applications

Black Side Network and Link Applications
Modem Applications

RF

Raytheon Page 7 of 78

2.3 Architecture Overview.

The structure of the software architecture is shown infigure 2.3-1. The key benefits of the software

architecture are that it:

1
2)

open, commercial software infrastructure, and

3

Maximizes the use of commercial protocolsand products,
I solates both core and non-core applications from the underlying hardware through multiple layers of

SCA Developer's Guide Rev 1.1

Provides for adistributed processing environment, through the use of CORBA, to provide software
application portability, reusahility, and scalability.

The CF Module specification includes a detail ed description of the purpose of each interface, the purpose
of each supported operation within the interface, and interface class diagrams to support these descriptions.

Non-CORBA
Security
Components

- {

Applications

Core Framework (CF)

Commer cial Off-the-Shelf
(COTY9)

Non-CORBA|
1/0
Componentq |

. ¥ ———— e I—=
Modem M odem Link, Network Securityf Security || Security Link, Network 1/0 1/0
Components| Adapter || Components Adapter|[Componentg|Adapter|| Components Adapter | Components

jl MAC API

ﬁLLC/Network API 1 Security Aﬂf[1
_/

[iicmework apt L oar I

Core Framework DL

P (“Logical Software Bus’ via CORBA)

T Ik it
[| | I [| | | [
R 5 I < 5 [=5 I R >
CORBA ORB & CF CORBA ORB & CF
Services Services& Services Services&
(Middleware) Applications ~ H| (Middleware) Applications |

Operating System

Network Stacks& Serial Interface Services

Board Support Package (BusL ayer)

Raytheon

Black Hardware Bus

Figure 2.3-1 Softwar e Structure

Operating System

Network Stacks& Serial I nterface Services

Board Support Package (BusL ayer)

| Red Hardwar e Bus

Page 8 of 78

SCA Developer's Guide Rev 1.1

Figure 2.3-2 depicts the key elements of the CF and the IDL relationships between these elements.

The interfaces enclosed by the red box are the ones the waveform devel oper would "realize” (implement).
The Device developers are most concerned with those interfaces enclosed by the blue box. The remaining
interfaces are the responsibility of a Core Framework product.

Implemented as

LCOre AnolCalon ServICes

Implemented by
Non.Core Applications,

Core Framework |nterface

Core Framework |nterface

<<Interface>> <<Interface>> <<Interface>> <<l ntsfa»>_ F: T
Port PortSupplier LifeCyde TestableObject [S
' N
inherits
<<Interface>> from
PropertySet
<<Interface>> = uses <<Interface>>
A /V Resource ResourceFactory
<<Interface>> Z'X
Device <<Inta.'faoa.> <<Interface>>
\ Application |<------------ ApplicationFactory
% ‘ :“
P N
/ N
i “ 0.*
<<Interface>> S
L oadableDevice S~ appli applicationFactories
uses™~ |
[
~ ~
<<Interface>> ~
<nterfoce> AagregateDevice 5 - —
i f device! ~ <sInterface>>
| ExecuteableDevice * < DomainManager

<<Interface>>

DeviceManager

<Interface>>

File
N

deviceManagers

<<Interface>>

FileSystem

5

<<Interface>>

FileManager

1.* <>

Figure2.3-2 Core Framework IDL Relationships

Raytheon

Page 9 of 78

SCA Developer's Guide Rev 1.1

2.4 Framework Interfaces

This section gives abrief overview of the Framework Control Interfaces (DomainManager,
ApplicationFactory, and Application) that provide control of the system. These interfaces manage the
registration/unregistration of applications, devices, and device managers within the domain and the
controlling of applications within the domain. The implementation of the Application, ApplicationFactory,
and DomainManager interfaces are coupled together and must therefore be delivered together as a complete
domain management implementation and service. The Framework Services Interfaces (File, FileSystem,
FileManager) that support both core and non-core applications are also discussed in this section.

2.4.1 DomainManager

The DomainManager interface is for the control and configuration of the system domain. Itislogically

grouped into three categories. Human Computer Interface (HCI), Registration, and CF administration.

?? The HCI operations are used to configure the domain, get the domain’ s capabilities (Devices, Services,
and Applications), and initiate maintenance functions. These operations are invoked by an HCI -client
capable of interfacing to the DomainManager.

?? Theregistration operations are used to register/unregister DeviceManagers, DeviceManager Devices,
DeviceManager Services, and Applicationsat startup or during run-time for dynamic device, service,
and application extraction and insertion.

?? The administration operations are used to access the interfaces of registered DeviceManagers and the
DomainManager's FileManager.

2.4.2 ApplicationFactory

The ApplicationFactory interface provides the Domain Management interface to request the creation of a
specific type of Application in the domain. The ApplicationFactory interface classis based on the OMG
Factory Design Pattern. The Software Assembly Descriptor profile (discussed further in section 6.5)
determines the type of Application that is created by the ApplicationFactory.

2.4.3 Application

The Application interface provides the Domain Management interface for the control and configuration of
an instantiated application in the domain. The Application interface classinherits the IDL interface of
Resource. A created application instance may contain Resource components and/or non-CORBA
components. An application is created by the ApplicationFactory create operation. The Applicationisa
proxy for the application’s assemblycontroller and application’s software components that were created.

2.4.4 File

The Fileinterface provides the ability to read and write afile residing within a CF-compliant, distributed
FileSystem A file can be thought of conceptually as a sequence of octets with a current file pointer
describing where the next read or write will occur. The file pointer points to the beginning of thefileasa
result of the execution of the file implementation software.

2.4.5 FileSystem

The FileSysteminterface defines CORBA operations that enable remote accessto aphysical file system.
The FileSysteminterface provides the traditional operations associated with file accesses (i.e. remove,
copy, directory listing, etc.).

Raytheon Page 10 of 78

SCA Developer's Guide Rev 1.1

2.4.6 FileManager

Multiple, distributed FileSystems may be accessed through a FileManager. The FileManager interface
appears to be asingle FileSystem, although the actual file storage may span multiple physical file systems.
Thisiscalled afederated file system. A federated file system is managed using the mount and unmount
operations. Typically, the DomainManager or system initialization software invokes these operations.
The FileManager inheritsthe IDL interface of aFileSystem Based upon the pathname of adirectory or
file and the set of mounted FileSystems, the FileManager delegates the FileSystemoperationsto the
appropriate FileSystem For example, if aFileSystemis mounted at/ ppc2, anopen operation for afile
caled/ ppc2/ profil e. xm would be delegated to the mounted FileSystem The mounted FileSystem
isgiven thefilenamerelativeto it. In this example the FileSystem’s open operation would receive
/profile.xn asthefileName argument.

If aclient does not need to mount and unmount FileSystems, it can treat the FileManager as a FileSystem
by CORBA widening aFileManager referenceto a FileSystemreference. One can alwayswiden a
FileManager to a FileSystemsince the FileManager is derived from aFileSystem

2.5 Base Application Interfaces

This section discusses the Base Application Interfaces (Port, LifeCycle, TestableObject, PropertySet,
PortSupplier, ResourceFactory, and Resource) that can be used by all software applications.

In several interface operations, a" Properties’ parameter isrequired. In the SCA context, " Properties"
refersto a CORBA sequence of id, value pairs. Within each pair, the first element is a string naming a
property and the second element provides avalue for that property.

2.5.1 Port

The Port interface provides operations for managing associations between ports. Transferring one object’s
reference to another object is a common occurrence in distributed programming. In a CORBA
environment, areference to an object can be obtained by using dynamic stringified IORs or the Naming
Service. The SCA providesthe Port interface to distribute the reference for any object to another object.
Figure 2.5-1 depicts the Port interface.

<<Interface>>
Port

@ connectPort(connection : in Object, name : in string) : void
@ di sconnectPort(name : in string) : void

Figure 2.5-1 Port CORBA Interface UML

Before describing how ports are connected, the terms uses-port and provides-port must be explained. Both
are called ports, but only the uses-port needs to implement the Port interface (due to its need for the
connectPort operation). A provides-port isatype of port that provides a user-defined CORBA interface — it
does not need to implement the Port interface. Theintent, then, isto connect the uses and provides ports
allowing the uses-port access to the provides-port operations.

When aclient desiresto connect two ports, several things must take place. A client must obtain the
reference to two component Resource interfaces, which inherit the PortSupplier interface. One of the ports
must be a uses-port and the other a provides-port. The client calls the getPort operation (on the
PortSupplier interface) for each component in the desired connection. The getPort operation returns a

Raytheon Page 11 of 78

SCA Developer's Guide Rev 1.1

CORBA object reference. So, in the case of the uses-port, this object reference must be narrowed to a Port
interface. For the provides-port, the CORBA object reference returned from getPort needs no modification.

The client calls the connectPort operation on the uses-Port, passing it a connection id and the provides-port
CORBA abject reference. A one-way connection has now been established. One-way, here, means client
to server, not the typical messaging approach intended for building unreliable signaling mechanisms (the
send-and-forget approach).

The ApplicationFactory has the requirements to establish the connections for application components
during the instantiation process of the application. . The connections to be established are described in the
application’s Software Assembly Descriptor (SAD) file.

Figure 2.5-2 is a sequence diagram depicting a simple one-way connection of two ports.

Raytheon

The reference returned
Component?2 is narrowed
a Port

T

Resource Resource - Somelnterfac
getPort (in
getPort returns a
CORBA::Object_p
getPort (in

connectPort (in Object, in

i

The narrowed reference (from
is used to establish a one-way

from the UsesPort to the

T someOperation

|/

1

The input reference from
connectPort is narrowed to
specific interface and used to
thé ProvidesPort

Figure 2.5-2 Sequence Diagram of One Way Connection

Page 12 of 78

SCA Developer's Guide Rev 1.1

2.5.2 LifeCycle

The LifeCycleinterface, which is depicted in Figure 2.5-3, provides generic operations for managing
initialization and termination of a specific object.

<<Interface>>

LifeCydle

Minitialize() : void
- BreleaseObject() : void

<<CORBATYypedef>>
StringSequence

Figure 2.5-3 LifeCycle Interface UML
The LifeCycleinterface provides the following operations:

initialize() : void

Theinitialize operation isinvoked on a created component of a Resource type in order to set it to its
initial, operative state. The ApplicationFactory implementation that created the Resourceis
responsible for itsinitialization. This operation performs tasks that must occur after the component's
constructor has terminated but before the component is used. For example, the component'sthis
pointer may be needed for some purpose, but the this pointer is stable only after the constructor has

terminated.

releaseObject() : void

The CF ApplicationFactory implementation that is associated with the target Resource invokes this
operation as part of the Application tear down sequence prior to unloading the Resource. This
operation should free internal memory, close files, and perform whatever other tasks are needed to
return the system to its default state.

2.5.3 TestableObject

The TestableObject interface, which is depicted in Figure 2.5-4, provides a means of performing Built-1n
Tests (BIT) with respect to a specific object.

<<Interface>>
TestableObject

"’runTest(testid :in unsigned long, testValues : inout Properties) : void

<<CORBAEXxception>>
UnknownProperties

ZiinvalidProperties : Properties

Figure 2.5-4 TestableObject Interface UML

Raytheon Page 13 of 78

SCA Developer's Guide Rev 1.1

The TestableObject interface provides the following operation:
runTest(testid : in unsigned long, testValues : inout Properties) : void

TherunTest operation istypically invoked as part of target Resource testing at the operator’ s console
aspart of BIT (Built-In Tests). The parameter testid specifieswhich test is to be run. Inputsinto the
testing process are provided asid,value pairsin testValues. Parameterstestid and testValues are
described in the appropriate properties XML file, but interpretation of both parametersis completely
component dependent, as provided in the component's implementation of these functions.

2.5.4 PortSupplier

The PortSupplier interface, which is depicted in Figure 2.5-5, provides means of obtaining areferenceto a
specific port for a specific object.

<<Interface>>
PortSupplier

“getPort(name : in string) : Object

Figure 2.5-5 PortSupplier Interface UM L

Figure 2.5-2 illustrates the use of getPort in the context of connecting a uses port to an appropriate produces
port. The PortSupplier interface provides the following operation:

getPort(name: in string) : Object

The getPort operation returns a object reference (either a Uses or a Provides port).

The returned Port object reference can be used to establish a connection between Resource
components. The getPort operation can be invoked by an external CF client on a CF Application
object returning Ports that are defined as external by the Application’s SAD XML file. The getPort
operation is also invoked by the ApplicationFactory implementation that has established a Resource
object as part of an overall software application when connections are documented in the
Application’s SAD XML file.

The getPort implementation returns a CORBA ::Object pointer to the component where the behavior
associated with the specified port isimplemented. The instructions which receive this pointer may
need to narrow it to a pointer to an appropriate interface, so often the pointer is generate through use
of anInterface::_this() call, where I nterface is the appropriate IDL interface.

Raytheon Page 14 of 78

SCA Developer's Guide Rev 1.1

2.5.5 PropertySet

The PropertySet interface, depicted in Figure 2.5-6, provides a means of accessing attributes of a specific
object.

<<Interface>>
PropertySet

*configure(configProperties . in Properties) : void
“query(configProperties : inout Properties) : void

// N

/ \\
’/f/ \\\ \
2 N
<<CORBAExcepti9n>> <<CORBATypedef>>
UnknownProperties Properties
sainvalidProperties : Properties

Figure 2.5-6 PropertySet Interface UML

The PropertySet interface provides the following operations:

configure(configProperties: in Properties) : void

The configure operation provides a mechanism to set the current values of configuration parameters
identified within the Property XML file of a Resource object. In atypical application, changing
configuration parameters is a mean of affecting operating characteristics of the component. The
configure operation of a Resource component may be called by any external CF client.

When the Core Framework creates Resources as part of an Application instantiation, the CF
Application implementation is required by the SCA to delegate all configure requests to the Assembly
Controller Resource of the Application. The implementation of an Assembly Controller may in turn
delegate requests to other Resources within the Application. When the Application developer needsto
have external capability of configuring or querying other Application Resources (besides the
Assembly Controller) those Resources may be provided as “ports’ by the Assembly Controller. In
this case, the ports for the other Resources will show up in the SAD external ports element.

This operation is also invoked by an ApplicationFactory implementation following the initialization
(initialize method) of a newly created Resource object during the Application create process. The
ApplicationFactory implementation establishes the preliminary settings for the recently created object
based upon those configuration parameters established within the Property XML file of the Resource.

query(configProperties : inout Properties) : void

Asacounterpart to configure, the query operation retrieves the current values of configuration
parameters identified within the Property XML file of a Resource object. The query operation of a
Resource component may be called by any external CF client. A CF Application implementationis
required by the SCA to delegate all query requests to the Assembly Controller Resource of the
Application. However, any Application Resource component may receive aquery if the Assembly
Controller Resource delegates the query to it.

Raytheon Page 15 of 78

SCA Developer's Guide Rev 1.1

2.5.6 Resource

The Resource interface (depicted in Figure 2.5-7) provides acommon API for the control and configuration
of asoftware component. The Resource interface inherits the LifeCycle, PropertySet, TestableObject, and
PortSupplier interfaces. The Resource interface may be inherited by other application interfaces as
described in the Software Profile's Software Component Descriptor (SCD) file.

An Application is comprised of oneto many components. A component can realize the Resource Interface,
in which case, the interface provides a common method of configuring, querying, etc. the component.

<<Interface>> <<Interface>>
<<Interface>> LifeCycle PropertySet <<Interface>>
PortSupplier TestableObject
. L
: initialize() configure()
SgetPort() ®releaseObject() ®query() SrunTest()
inherits
from

<<Interface>>
Resource
sridentifier : string

*_starto : void
"‘stopo : void

AN/

<<CORBAEnum>>
ErrorNumberType

Figure 2.5-7 Resour ce CORBA Interface UM L

The SCA includes requirements specifying when certain operations may be performed. Although the SCA
itself provides no terminology to label these situations, application developers commonly label them by
distinguishing between IDLE state (when only configure, query, and start may be performed) and
OPERATIONAL state (when any operation may be performed). Actual enforcement of the" IDLE state"
limitationsisleft to the developer. Often thisisaccomplished by spawning a special class that realizes only
configure, query, and start behavior (or by having each function base its behavior upon an attribute that
denotes the current state).

The Resource interface provides the following operations:
start() : void
The start operation is used to move a created Resource to OPERATIONAL state from IDLE state.
The start operation may be called by any external CF client.
stop() : void

The stop operation is used to move a created Resource to IDLE state from OPERATIONAL state.
The stop operation may be called by any external CF client.

Raytheon Page 16 of 78

SCA Developer's Guide Rev 1.1

2.5.7 ResourceFactory

A ResourceFactory may be used to create and tear down a Resource. The ResourceFactory interface is
designed after Factory Design Patterns. The ResourceFactory interface UML is depicted in Figure 2.5-8
The ResourceFactory interface provides a standard API for obtaining, creating, and destroying Resources
within an Application. If a Resource within an Application needs to be executed multiple times, the
ResourceFactory interface could be used in the Application developer’ s design and i mplementation.

<<Interface>>
ResourceFactory

gidentifier : string

“"createResource(resourceId . in string, qualifiers : in Properties) : Resource
“"releaseResource(resourceld : in string) : void
Wshutdown() : void

7/
/// \\\
/ \
/ \,
s \{/ \\\
s ~N
<<CORBATypedef>> <<CORBAEnum>> <<Interface>>
Properties ErrorNumberType Resource

Figure 2.5-8 Resour ceFactory CORBA Interface UML

The ResourceFactory interface provides the following operations:

createResource() : Resource

If a Resource with the specified resourceld does not exist, the createResource operation creates the
Resource with areference count® of 1 and returns a reference to that Resource. If a Resource with the
specified resourceld does exist already, the createResource operation increments the Resource's
reference count by 1 and returns a reference to the Resource.

releaseResource() : void

The releaseResource operation decrements the Resource's reference count; if the reference count now
eguals zero, the operation then rel eases the Resource from the CORBA environment. In any case, the
client has responsibility to release its reference to the Resource.

shutdown() : void
The shutdown operation terminates the ResourceFactory implementation on the server side.
The client has responsibility to release its reference to the ResourceFactory.

The ResourceFactory interface is an optional interface that can be used by an application devel oper.
In the most common case, a ResourceFactory is not provided within an Application, so the Core
Framework's ApplicationFactory implementation is used to construct the application.

4 reference count keepstrack of how many clients are using the server-side entity.

Raytheon Page 17 of 78

SCA Developer's Guide Rev 1.1

2.6 Service Interfaces

2.6.1 Naming Service

The OMG Naming Serviceis one of CORBA’s standardized services. It provides a mapping from names
to object references: given aname, the service returns an object reference stored under that name. Thisis
similar to the Internet Domain Name Service (DNS), which translates an Internet domain name (such as
acme.com) into an | P address (such as 234.234.234.234)°.

The Naming Service provides a number of advantages to clients (aclient of the Naming Service):

?? Clients can use significant names for objectsinstead of dealing with stringified object references.

?? By changing the value of areference advertised under a name, you can get clients to use a different
implementation of an interface without having to change source code. The clients use the same name
but get adifferent reference.

?? The Naming Service can be used to solve the problem of how application components get access to the
initial references for an application. Advertising their references in the Naming Service eliminates the
need to store them as stringified referencesin files.

The Naming Service maps names to object references. A name-to-reference association is called aname
binding. The same object reference can be stored several times under different names, but each name
identifies exactly onereference. A naming context isan object that stores hame bindings.

A hierarchy of contexts and bindingsis known asanaming graph. In the graph below (Figure 2.6-1),
hollow nodes are naming contexts and solid nodes are application objects. Within aparticular context,
name bindings are unique (each binding can appear only once within its parent context). The sequence of
bindings used in the traversal forms a pathname that uniquely identifies the target object. The same name
binding can appear multiple times provided that each binding isin adifferent parent context. A single
object or context can have multiple names. It ispossible for the graph to have contexts that have no names.
Such contexts are known as or phaned contexts.

= - Object Reference
@ = Object
O =context

— = Optional Contexts DomainName

DomainManager

ApplResourcel ApplResource2 APp2Resourcel App2Resource2
Factory

Figure 2.6-1 Naming Graph

® « Advanced CORBA Programming With C++” (Addison-Wesley Professional Computing) Henning &
Vinoski p772

Raytheon Page 18 of 78

SCA Developer's Guide Rev 1.1

Because of critical size and tight processing requirements, it is difficult to incorporate afull-featured OMG
Naming Serviceinto areal-time embedded application domain, such asaJTRS radio. The reguirements of
these types of systems differ vastly from other general-purpose transaction-based CORBA applications.
Removing interfaces and methods not required for the embedded real-time environment would allow
Naming Service functionality to be more economically sized. The SCA Naming Serviceisa'lightweight’
version of the OMG Interoperable Naming Service. When there were two methods for accomplishing a
required task, one method was supported, and the other dropped. The OMG Naming Service List and
Bindinglterator interfaces were omitted, since they were deemed as being unnecessary for most embedded
domain use. Thefollowing list summarizes the required interfaces supported by an SCA Naming Service:

The bind Interface
Thebind_new_context Interface
Theresolve Interface

The unbind Interface

The Destroy Interface

i I N, O S

The following OMG Naming Service interfaces are not supported in the SCA’s Naming Service definition
and should not be used:

Therebind Interface
Therebind_context Interface
The bind_context Interface
The new_context Interface
Thelist Interface

The Bindinglterator Interface

N3NNI IIDN

2.6.1.1 Use of Naming Service

All components managed by a particular DomainManager must use the same Naming Service, but that
Naming Service can be located on any processor that is accessible to the components. If the Naming
Service and other facilities provided by the ORB vendor conform to the OMG standard, then calling an
ORB’sresolve_initial_reference operation will obtain a connection to the Naming Service. Proprietary
methods may be available for connecting to the Naming Service, but these methods do not meet SCA
requirements.

In general, an object that wishesto ‘publicize’ its object reference registers with the Naming Service.
Within a JTRS system, the SCA requires the CF DomainManager and Application (waveform) Resources
to publicize their respective IORs in the Naming Service. No other JTRS component (CF or waveform) is
required to store its IOR on the Naming Service.

A Naming Service’ s NameComponent structure is used to identify a context or an object’sIOR binding to a
context. A Naming Service’s NameComponent structure is made up of an id-and-kind pair. For JTRS, the
SCA requiresthe “id” element of each NameComponent to be a string value that uniquely identifiesa
NameComponent and the “kind” element of the NameComponent be “” string (null string).

During component construction, the DomainManager creates a"naming context™ under the root Naming
Service context using "/DomainName” as its name.ID component and "" (Null string) asits name.kind
component. It then creates a"name binding" to the "/DomainName" naming context using
"/DomainManager" asits name.ID component, "" (Null string) as its name.kind component, and the
DomainManager's object reference.

For awaveform Resource, the context to which the Resource is required to bind its object referenceis
dictated by the CF ApplicationFactory. During the initial execution of awaveform, the ApplicationFactory
create operation passes mandatory execute-parameters to a Resource’ s entry point. A Naming Context
IOR, aName Binding, and the identifier for the Resource (in the form of CF::Properties) are passed to the

Raytheon Page 19 of 78

SCA Developer's Guide Rev 1.1

entry point of the Resource componentsto be executed viaa Device's execute operation. For the Naming
Context |OR parameter the CF::Properties ID element is set to the string of "NAMING_CONTEXT_|IOR"
and the CF::Properties value element is set to the stringified | OR of a naming context to which the
component will bind its IOR. The create operation creates the naming contexts to which the component
will bind its IOR. For the Name Binding parameter, the CF Properties ID element is set to the string of
"NAME_BINDING" and CF Properties value element set to a string in the format of
"ComponentName_Uniquel dentifier". The ComponentName value is the SAD componentinstantiation
findcomponent namingservice element’ s name attribute. The Uniquel dentifier is determined by the
implementation of the ApplicationFactory. The Name Binding parameter is used by the component in the
naming structure when binding its object reference to the Naming Context |OR parameter.

The processis reversed, and the component's name and reference are remo ved from the Naming Service's
Naming Graph by the CF ApplicationFactory implementation, when the application is torn down.

The ApplicationFactory implementation performs these steps when it creates an application, so the
waveform developer need be concerned with them only if the ApplicationFactory implementation isnot
used to build the waveform.

Figure 2.6-1 depicts an example listing from a JTRS utilizing the Naming Service. Optional application
(waveform) context objects may be listed under the Domain context.

2.6.2 Log Service

A JTRS Log Service stores log records written to it. The stored log records can be retrieved and del eted
fromaLog. There can be any number of Log Servicesin a JTRS system. A log producer isaCF
component® or an application’s CORBA capable component” that enters records into aLog by calling the
writeRecordsoperation of the Log interface.

A CF component or application component can write log records (e.g., messages) to a Log Service for
storage. The stored log records can be retrieved as fault history, event history, general application
messages, etc. Thereis no regquirement that an application component write log records, but the Log
Service does provide a standard mechanism if logging is desired.

A standard record typeis defined for all log producers to use when writing log records. The log producer
may be configured viathe PropertySet interface to output log records only for specific log levels. Log
producers implement a configure property with an ID of “PRODUCER_LOG_LEVEL”. The
PRODUCER_LOG_LEVEL configure property provides the ability to “filter” the log message output of a
log producer. This property is of type LogLevel Sequence. The configure property L ogL evel Sequence
contains al log levelsthat are enabled. Only messages containing an enabled log level are sent by alog
producer to aLog. Log levelsthat are not in the LogL evel Sequence are disabled.

2.6.2.1 Use of Log Service

The LogService module contains the Log interface and the types necessary for alog producer to generate
standard SCA log records. This module also defines the types necessary to control the logging output of a
log producer. An SCA Log Service, as specified in this section, may be provided in a JTRS installation.
The optional aspect of the Log Service is restricted to its deployment. A JTRSinstallation (e.g., a handheld
platform with limited resources) may choose not to deploy a Log Service as part of its domain. Several CF
components contain requirements to write log records using the Log Service. CF components and
applications that are required to write log records are also required to account for the absence of aLog
service and otherwise operate normally.

6 e.g., DomainManager, Application, ApplicationFactory, DeviceManager, or Device
! e.g., Resource, ResourceFactory

Raytheon Page 20 of 78

SCA Developer's Guide Rev 1.1

Once a Log Service has been registered with the DomainManager, the Log Service can then be used by
componentsin the system. Log Services are registered with the DomainManager by type (i.e. Log) and
name (e.g. Security, Failure Log). For waveform applications, the DomainManager utilizes the XML
connectionselement of the Application’s Software Assembly Descriptor (SAD). The connection element
documents uses and provides ports to be connected together. The connection of acomponenttoalogis
established using this method. A SAD fileconnection / providesport / findby / domainfinder XM L can
contain attributes of type=“Log"” and name = “Test". The DomainManager would connect the L og named
Test to the component using the getPort / connectPort mechanism. If the name attribute is not supplied in
the XML, anull referenceis provided to the Resource component. If the requested Log is not registered in
the system the DomainManager keeps the requesting pending and is required to perform the connection
when the appropriate Log Service registers.

L og Service connections to Devices are established in the same manner as connections to application
(waveform) Resources. When a DeviceManager or Device registers with the DomainManager the
DomainManager performs the connections documented in the DeviceManager’ s Device Configuration
Descriptor (DCD) file. The DCD XML connectionselement is used is the identical manner asin an
Application’s SAD file.

The Log Service connections for the DomainManager are documented in the DomainManager’s XML
Configuration Descriptor (DMCD) file. The DMCD file containsthe XML service/ findby elements
which dictate the type and name of the Log Service to utilize for logging. The DomainManager is required
tolog to the Log Service(s) dictated by the DMCD file.

This method of connecting ports of a Resourceto aserviceisidentical for the connection of both the Event
and Log Service. Section 2.6.3.1, Use of Event Service, provides sample XML depicting the XML for
describing the connection of a service to a CF component or Resource component.

2.6.3 CORBA Event Service

The OMG Event Service allows applications to use a de-coupled communications model rather than strict
client-to-server synchronous reguest invocations. With synchronous requests, a client actively invokes
requests on passive servers- After sending arequest, the client blocks waiting for the response. Clientsare
aware of the destinations of requests because they hold object references to the target objects, and each
request has a single destination denoted by the object reference used to invoke it. The OMG Event Service
allows suppliersto send messages to one or more consumers with asingle call. Infact, suppliersusing an
implementation of the Event Service need not be aware of any of the consumers of its messages; the Event
Service implementation also shields suppliers from exceptions resulting from any of the consumer objects
being unreachable or poorly behaved.

Inthe OMG Event Service Model, suppliers produce events and consumers receive them. Both suppliers
and consumers connect to an event channel, which conveys events from suppliers to consumers without
requiring suppliersto know about consumers or vice versa. Event channels play a central rolein an Event
Service. They areresponsible for supplier and consumer registration, timely and reliable event delivery to
all registered consumers, and the handling of errors associated with unresponsive consumers.

The OMG Event Service provides two models for event delivery: the push model and the pull model. The
SCA, however, only uses the push model. With the push model, suppliers push events to the event channel,
and the event channel pushes events to consumers. Figure 2.6-2 illustrates the push style of event delivery.
Note that the arrows indicate the client and server roles and point from client to server.

Raytheon Page 21 of 78

SCA Developer's Guide Rev 1.1

/ push ! push
-\ Consumer Event Channel t Supplier
“ 1)
(server) {client) server (client)
% Direction of Event Flow

Figure 2.6-2 OMG Event Service— Event Channel Models®

2.6.3.1 Use of Event Service

A CF implementation isrequired to provide two standard event channels: Incoming Domain Management
and Outgoing Domain Management. The standardized name of the Incoming Domain Management
Channel is"IDM_Channel”. The Incoming Domain Management event channel is used by components
(e.g., Device state change event) within the domain to generate events that are consumed by domain
management components (e.g., ApplicationFactory, Application, DomainManager, etc.) The standardized
name of the Outgoing Domain Management Channel is"ODM_Channel". Domain clients (e.g., HCI) use
the Outgoing Domain Management Channel to receive Domain Management events generated from
domain management components (e.g., ApplicationFactory, Application, DomainManager, €tc.).

The DomainManager creates the standard event channels upon startup.

Besides these two standard event channels, the OE allows other event channels to be set up for Application
usage. An event channel provides an asynchronous transfer of data between components. It is not
recommended that an event channel be used for real-time transfers; instead, it is recommended that a
specific waveform API be used for real-time activity. Event channels are intended for non real-time
messages and are best used when developing a specific APl would be impractical.

The definition of anonstandard event channel is accomplished through an Application’s Software
Assembly Descriptor (SAD) file (Section 4.4). An Application’s SAD file can contain a domainfinder
element within a connection element specifying the interconnection of a component (e.g., Resource) to a
service. The domainfinder element is achild element of the findby element. The domainfinder element is
used to indicate to the CF ApplicationFactory implementation the necessary information to find an object
reference that is of specific type and may also be known by an optional name within the domain. Thetype
attribute value of “eventchannel” is used to specify the event channel to be used in the CF Event Service for
producing or consuming events. If the name attribute is supplied, but the name is not one of the standard
event channel names (IDM_CHANNEL or ODM_CHANNEL) and the type attribute has a val ue of
“eventchannel”, then the CF ApplicationFactory implementation will create the specified channel. If the
name attribute is not supplied and the type attribute has a value of “eventchannel” then the Incoming
Domain Management event channel isused. This method of connection ports of a Resourceto a Serviceis
identical for the connection to both the Event and Log Service.

Figure 2.6-3 illustrates the event channel flow between producer and consumer. One concept this figure
shows isthat aconsumer must supply its provides object reference to a producer so that it may consume
what the producer provides.

8 « Advanced CORBA Programming With C++” (Addison-Wesley Professional Computing) Henning &
Vinoski p931

Raytheon Page 22 of 78

SCA Developer's Guide Rev 1.1

Event Channels
serves dual role -

Application

Consumer

Component
event

consumer

event
producer

connection to

has consumer has a
a
provides uses
port port

]

1

XML for Consumer Component (1)

<connections>

<connectinterface>

<usesport>

<usesidentifier>

event_channel_consumer_port_that_can_be_any_name

</usesidentifier>

<findby>
<domainfinder
type="eventchannel"
name="XYZ"/>
</findby>

</usesport>

<providesport>

<usesidentifier>consumer_event_in_port</usesidentifier>

<componentinstantiationref
refid="consumer_component"/>

</providesport>
</connectinterface>

<connections>

Figure 2.6-3 Event Channel Flow between Producer & Consumer Components

Raytheon

producer/consumer

event

Application

Producer

Component
event

consumer producer

connection to
consumer has a

provides uses

port

port

]

2

XML for Producer Component (2)

<connections>
<connectinterface>
<usesport>

<usesidentifier>
producer_event_out_port
</usesidentifier>

<componentinstantiationref
refid="producer_component"/>

</usesport>

<providesport>
<findby>
<domainfinder
type="eventchannel"
name="XYZ"/>
</findby>
<providesport>

</connectinterface>

<connections>

Page 23 of 78

SCA Developer's Guide Rev 1.1

3 Application Program Interface (API) Overview

The API Supplement to the SCA defines structures to simplify the construction of portable SCA
applications. Organized similarly to the OSl, each API containsrelated functionality asis shown in Figure
3-1. Each API contains"A" interfaces (data and real-time control carried by the data stream) and "B"
interfaces (non-real-time control from the User Interface (Ul), other layers, and other applications).

If an APl is designed for adevice, it includes interface CF::Device; otherwise it includes interface
CF::Resource’. The APl Supplement provides for all other interfaces needed by an SCA -compliant
component.

A data/ real-time control connection islabeled as being either " downstream” (moving messages towards
the modem) or " upstream” (moving messages from the modem).

A% Data and Reaktime
Control

- B MNon-resl-time Control,
Setup and Initkakzaton,
from applications, other
lewels, user inlerface

Netwark
Wavefarm
Application ﬁ# A :
LLC > B LLC = B

~d i A%
Extarinal

o B Physical - B Network
Connection

Figure3-1 Organization of APIs

Each API isdivided into small closely related partitions, called "Service Groups', allowing adesigner to
use just those portions that are needed for a particular application. A concrete Service Group is acomplete
class. A generic Service Group, also known as a"Building Block", is atemplate class for which one, or
more, parameters must be replaced by a particular type in order to create a concrete class specific to the
application. The process of associating an actual type with the parameter is known as " binding", and the
process of creating a concrete class from atemplate class is known as "instantiating"*°. A unified
interface structure can be created by bringing together specific Service Groups as needed - the desired
unifying classinherits from all relevant classes, so it contains all attributes and operations contained in
those classes.

% See Section 3.2.2.1 and Figure 3-3 of the APl Supplement.

10 Thisis another example of terminology overloading, since this use of "instantiating" to mean "create a
concrete class from atemplate class" is easily confused with the more common use of "create an object of a
particular class".

Raytheon Page 24 of 78

SCA Developer's Guide Rev 1.1

The interfaces between two layers are defined by the lower layer.™* Both directions must be defined -

one interface for messages moving downstream'2, and one interface for messages moving upstream®>.

For example, the interfaces between the Physical and MAC layers are defined by the Physical layer.

The downstream ("provider") interface isimplemented by the Physical layer andisinvoked by the MAC
layer, and the upstream ("user") interface isimplemented by the MAC layer and isinvoked by the Physical

layer.

3.1 Generic Packets

Generic Packetsis a collection of Building Blocks (BB). Asisimplied by the name, these are generic
classes that are used to define packet structure for any real-time interface. These classes/BuildingBlocks
aretailored to handle any type of data, since type of datais a parameter used when binding the template
classto create aconcrete class. Thisgrouping is comprised of the following Building Blocks:

?? SimplePacketBB - datatransfer only

?? PacketBB - datatransfer with Quality-of - Service and flow-control

?? ErrorSignalBB - asynchronous error notification

?? SignasBB - notify when queue is empty or has reached high watermark or low watermark

3.2 Physical API

The Physical layer provides functionality directly related to operating amodem. In this particular case, the
API Supplement separates"A" Interface and "B" Interface services (see Figure 3-1 above).

3.2.1 Physical Real Time

Physical Real Time Service Groups contain types and operations relating to control information carried by

the data stream (actual packets are built from generic packets described in section 3.1). The following

Service Groups are contained inthis group:

?? TransmitPackets - "instantiation" of SimplePacketBB or PacketBB with a data class corresponding to
the type of data actually received from the attached (MAC) layer.

?? ReceivePackets - "instantiation" of SimplePacketBB or PacketBB with a data class corresponding to
the type of data actually sent to the attached (MAC) layer.

?? ReceiveCommand - specifics of command are contained in actual type bound to the parameter

3.2.2 Physical Non-Real Time

Physical Non-Real Time Service Groups contain types and operations relating to control information
delivered apart from the datastream (typically from the Ul). The following Service Groups are contained in
this group:

AntennaControlBB - controls which antenna(s) are connected to the transceiver

M odul ationSetupBB - controls modul ation/demodul ation type { AM, FM, ...} and settings
MediaSetupBB - controls setup needed for voice, data, etc.

TransceiverSetupBB - controls characteristics which are covered by neither MediaSetupBB nor
M odul ationSetupBB

RadioModeBB - controls whether transceiver is off, operational, in setup mode, in test mode, etc.
ReceiveTerminationBB - used to terminate current reception and determine new status
Transmit_Inhibit - causes transceiver to be silent

Physical Management - sets maximum and minimum Transmission Units

TN N SN

TN TN N

1 e Figure 3-3 (page 3-7) of the API Supplement for an illustration of thisrule.
12 The API Supplement callsthisthe "Provider Interface”
13 The APl Supplement callsthisthe "User Interface"

Raytheon Page 25 of 78

SCA Developer's Guide Rev 1.1

3.3 Medium Access Control (MAC) API

The MAC layer, which is responsible for configuring the elements that move data between applications,
consists of the following Service Groups:

?? MACCommonUtilityBB - generalized methods needed by more than one MAC Building Block;
one common use of this Building Block would be to provide preset channel and/or power levels
TRANSECBB - non-Type 1 TRANSEC operations

Channel ErrorControl BB - attempts to maintain integrity of message over the physical channel (error
correction is an example of what could be provided by this Building Block)

Channel AccessBB - channel accessincludes sync, end-of-message, and TDMA/CSMA/DAMA /etc
MACAddressBB - allows user to define addressat MAC level

DropCaptureBB - facilitates returning to search state

QOSBB - allows user to access channel quality of service information when MAC calculates this
TransmitPackets - similar to corresponding Service Group in the Physical layer'

ReceivePackets - similar to corresponding Service Group in the Physical layer**

NN

NI IISN

3.4 Logical Link Control API

The LLC layer providesthree levels of service between end-points:

1. Connectionless serviceis adatagram service which
a notifiesthe sender if an error is detected
b. provides flowcontrol between the end-points

2. Acknowledged Connectionless service is a datagram service which, in addition to services provided by
connectionless service
a provides acknowledgements so that sender can verify arrival of a message
b. delivers packetsin the same order in which they were sent

3. Connection-mode serviceis not yet defined. When fully specified, this service will create avirtual
circuit that provides convenient delivery between the end-points, including a"moving window" to
enable one reply to acknowledge a group of messages.

The LLC layer currently consists of the following Service Groups:

?? LocalManagement - apply to both connectionless and connection-mode services

?? Connectionless Mode Data Transfer - applies to connectionless service only

?? Acknowledged Connectionless Mode Data Transfer - applies to acknowledged connectionless service
only

3.5 /O API

Thel/O layer, which establishes the means of communicating with a specific type of 1/O device, consists of
the following Service Groups:

|OConfigurationBB - provides means of configuring specific I/O device

|OControlBB - provides means of controlling specific 1/0 device during operation

|OSignals - provides means for device to signal "downstream" component

Audible Alerts And Alarms- provides means to define audible signal as a sequence of single tones
(resulting sound could be as complex as asiren, for example)

TN N I

1% These Service Groups are not explicitly included in the " Cross-Reference of Services and Primitives"
table for the MAC layer, but the accompanying text clearly indicates that they areincluded in MAC layer.

Raytheon Page 26 of 78

SCA Developer's Guide Rev 1.1

4 Domain Profile Components

The hardware devices and software components that make up an SCA system domain are described by a set
of XML descriptor files that are collectively referred to asaDomain Profile. This section provides a high-
level overview of each profile, emphasizing the purpose of each. This section will not go into detail on the
various DTD elements for each profile— That type of detail can be found in Appendix D of the SCA.
Figure 4-1 depicts the relationships between the various descriptor files used to describe a system's
hardware and software assets. This section, however, only focuses on the descriptor files essential to an
Application developer (Outlined in red in Figure 4-1) - Theseinclude the Software Package, Properties,
Software Component, Software Assembly, and Profile descriptor files. The profiles applicableto adevice
developer (outlined in green in Figure 4-1) are discussed in section 7, Device Creation. A Software Profile
is either a Software Assembly Descriptor (for applications) or a Software Package Descriptor (for all other
software components and hardware devices). These descriptor files describe the identity, capabilities,
properties, and inter-dependencies of the hardware devices and software components that make up the
system. All of the descriptive data about a system is expressed in the XML vocabulary. This section
includesaUML diagram of each root-element defined in the specified profile, along with some guidance
on how to use the specified profile.

Domain Profile

- { \ /
0..n 0..n

<<DTDElement>>
Device Configuration Descriptor

<<DTDElement>>
Software Assembly Descriptor

\
\

<<DTDElement>> <<DTDElement>>
Software Package Descriptor Profile Descriptor

DomainManager
Configuration Descriptor

1

——
1.
<<DTDElement>> 1.n 1

Profile Descriptor

0..n 0..n

<<DTDElement>> <<DTDElement>> <<DTDElement>>
Device Package Descriptor |————4 Properties Descriptor Software Component Descriptor

Figure 4-1 Domain Profile Descriptor File Relationships

Raytheon Page 27 of 78

SCA Developer's Guide Rev 1.1

4.1 Software Package Descriptor

The SCA Software Package Descriptor (SPD) is used at deployment time to load and/or execute an SCA
compliant component. The information contained in the SPD provides the basis for the Domain
Management function to manage the component within the SCA architecture.

The SPD may contain various deployment implementations of any given component. Within the
specification of an SPD, several other files are referenced including a component-level propertyfile and a
software component descriptor file.

The softpkg element defines an SPD. The softpkgid attribute uniquely identifies the package and isa DCE
UUID, as defined by the DCE UUID standard (adopted by CORBA). The DCE UUID format starts with
the characters "DCE:" and is followed by the printable form of the UUID, a colon, and adecimal minor
version number, for example: "DCE:700dc518-0110- 11ce-ac8f-0800090b5d3e:1". The decimal minor
version number isoptional. The version attribute specifies the version of the component. The name
attribute is a user-friendly label for the softpkg element. The type attribute indicates whether or not the
component implementation is SCA compliant. All filesreferenced by a Software Package are located in
the same directory asthe SPD file or adirectory that isrelative to the directory where the SPD fileis
located.

<<DTDElement>>
softpkg

id : ID

wname : CDATA

witype : (sca_compliant | sca_non_compliant) = sca_compliant
caversion : CDATA

<<DTDSequenceGroup>>
softpkg_grp
(from softpkg)

1..n
2

4 o

<<DTDElement>> <<DTDElement>>| <<DTDElement>> <<DTDElement>>
propertyfile author descriptor usesdevice
citype : CDATA winame : CDATA Zid : ID
ditype : CDATA
0.. 1.n
) ©) Sl
<<DTDE|emgntPCDATA>> <<DTDElement>> <<DTDElementPCDATA>>
title implementation description
eid : ID

waepcompliance : (aep_compliant | aep_non_compliant) = aep_compliant

Figure 4.1-1 softpkg Element Relationships

An SPD should be provided as part of the software documentation for an application or device
implementation. The SPD should contain all of the mandatory XML elements as well as many of the
optional elements. There should be one implementation element for each variant (processor, operating
system, etc) of the component. The propertyfile element of the SPD is optional but should be provided,

Raytheon Page 28 of 78

SCA Developer's Guide Rev 1.1

because it providesthe definition of properties elements common to all component implementations and
implementati on-specific properties being deployed in accordance with the Software Package.

The usesdevice element is not required, because an application may not use a device; however, there should
be a usesdevice element for each device that is needed by the application.

4.2 Properties Descriptor

The Properties Descriptor file details component and device attribute settings. For purposes of the SCA,
properties files contain simple, simplesequence, test, struct or structsequence elements. These elements are
used to describe attributes of a component that are used for dependency checking.

The simple element is the property descriptor’s central element. It provides for the definition of a property,
which includes a unique id, type, name, and mode attributes. Also included in the simple element are the
value, units, and range sub-elements, which are provided asinitial configuration or execute parameters of a
component.

<<DTDElement>>
properties

<<DTDSequenceGroup>>
properties_grp
(from properties)

1 0'/ 1'& 2

<<DTDElementPCDATA>> <<DTDChoiceGroup>>
description properties_grp_grp
(from properties_grp)

<<DTDElement>>| |<<DTDElement>>| |<<DTDElement>>| [<<DTDElement>>| [<<DTDElement>>
simple simplesequence test struct structsequence

Figure 4.2-1 properties Element Relationships

A propertiesfile should be provided as part of the software documentation for an application or device
implementation. The properties file should not exclude any element.

The description element of the propertiesfileisoptional but should be provided. The description element
can be used to provide text information about how the propertiesfile is used and what is meant by each of
the properties.

The propertiesfile should include a properties element for each attribute used in the the configure() and
query() operations for SCA CF Resource components, for each attribute used for dependency checking,
and for each attribute used in the CF TestableObject runTest() operation to configure tests and provide test
results.

Raytheon Page 29 of 78

4.3 Software Component Descriptor

The Software Component Descriptor (SCD) describes a component with respect to the interfaces that it
inherits from, the interfaces the component supports, and listsits provides and uses ports. The supported
interfaces are those distinct interfaces that were inherited by the component’ s specific interface. The
specified port names (uses and provides) can be used in the Software Assembly Descriptor to connect the
component ports to other components.

1 z/

SCA Developer's Guide Rev 1.1

<<DTDElement>>
softwarecomponent

v

<<DTDSequenceGroup>>
softwarecomponent_grp
(from softwarecomponent)

{6}

<<DTDElementPCDATA>> <<DTDEIem§nt>>
corbaversion propertyfile
\ditype : CDATA
@ G {4 5
<<DTDElementEMPTY>> | [<<DTDElementPCDATA>> <<DTDElement>> <<DTDElement>>

componentrepid

componenttype

componentfeatures

interfaces

‘carepid : CDATA

Figure 4.3-1 softwar ecomponent Element Relationships

An SCD should be provided as part of the software documentation for an application or device
implementation. The SCD should contain each of the following:

7?

7?

Raytheon

corbaversion
componentrepid

componenttype

componentfeatures

—the repository id of the component

— identifies the type of software component object

{ resource/ resourcefactory / device}

— describes each supported message port for the component

— indicates which version of CORBA the component is devel oped for

— describes the component unique id and name for each supported interface

Page 30 of 78

SCA Developer's Guide Rev 1.1

4.4 Software Assembly Descriptor

This section describes the XML elements of the Software Assembly Descriptor (SAD) XML file. The
softwareassembly element is the root element of the software assembly descriptor file. The SAD is based
on the CORBA Components Specification Component Assembly Descriptor. The intent of the software
assembly isto provide the means of describing the assembled functional application and the
interconnection characteristics of the SCA components within that application. The component assembly
provides four basic types of application information for Domain Management. Thefirst is partitioning
information that indicates special requirements for collocation of components, the second is the assembly
controller for the software assembly, the third is connection information for the various components that
make up the application assembly, and the fourth is the visible ports for the application assembly.

<<DTDElement>>
softwareassembly
“aiid : 1ID

‘ciname : CDATA

!

<<DTDSequenceGroup>>
softwareassembly_grp

(from softwareassembly)

{6}

<<DTDElementPCDATA>> <<DTDElement>>
description externalports
1 8 &
<<DTDElement>>| |<<DTDElement>> <<DTDElement>> <<DTDElement>>
componentfiles partitioning assemblycontroller connections

Figure 4.4-1 softwar eassembly Element Relationships

An SAD should be provided as part of the software documentation for an application implementation.
The SAD should contain all of the mandatory XML elements as well as most of the optional elements.
The description element of the SAD is optional but should be provided., because it can be used to provide
text information about the application implementation. The connections element is not required, because
some application may not have any connections; however, there must be a connections element if the CF
ApplicationFactory implementation needs to connect components together. Likewise, the externalports
element identifies any port which might be the subject of a getPorts query from outside the application
(from a GUI, for example); thus there should be an externalports element for any port which might be
requested by external entity.

Installing an application into the system consists of installing a SAD file. The SAD file references
component’s SPD files to obtain deployment information for these components. The softwareassembly
element’sid attribute isa DCE UUID, as specified in section 4.1, which uniquely identifies the assembly.
The softwareassembly element’ s name attribute is the user-friendly name for the CF ApplicationFactory
name attribute.

Raytheon Page 31 of 78

SCA Developer's Guide Rev 1.1

4.5 Profile Descriptor

The profile element can be used to specify the absolute profile file pathname relative to a mounted CF
FileSystem The filename attribute is the absolute pathname relative to a mounted FileSystem This
filename can also be used to access any other local file elementsin the profile. The type attribute indicates
the type of profile being referenced. The valid type attribute values are “SAD”, “SPD”, “DCD”, and
“DMD”. Thiselement can be given out for any CF interface (e.g., CF Application, CF Device, CF
ApplicationFactory, CF DeviceManager, CF DomainManager) that has profile attributes.

The format described by the profile descriptor XML can be used in the implementation of certain SCA
interface attributes. The attributes that utilize the format dictated by the profile descriptor XML arethe
Application's softwareProfile, the DomainManager's domainM anagerProfile, the DeviceManager's
deviceConfigurationProfile, and the Device's softwareProfile attribute. The profile descriptor XML is not
used in any delivered XML file.

Raytheon Page 32 of 78

SCA Developer's Guide Rev 1.1

5 Design Progression

An interface defines the connection between awaveform component and another waveform component or
between awaveform component and an entity™ outside the waveform. CORBA prescribes an I nterface
Definition Language (IDL) to define interfaces. Servant code provides the actual implementation for an
interface. Numerous desigh methodologies are available to develop an implementation based upon IDL.
This section discusses object-oriented procedures (using a software modeling tool). Following these
procedures will enable the devel oper to create implementation servant code when IDL providesthe initial
definition.

5.1 IDL Modeling

CF interfaces are expressed in CORBA IDL. The SCA IDL has been generated directly by the Rational
Rose UML software-modeling tool. This*“forward engineering” approach ensuresthat the IDL accurately
reflects the architecture definition as contained in the UML models. Any IDL compiler for the target
language of choice may compile the generated IDL.

Application LoadableDev
ice

ApplicationF

actory Executable

Device

Device TestableObj

ect

DeviceMana O O O A) ResourceFa i
ger AggregateD DomainMan . FileManager FileSystem LifeCycle Port PropertySet Resource ctory PortSupplier
evice ager

Figure5.1-1 CF CORBA Module

Forward Engineering is the process of transforming a model into code through a mapping to an
implementation language. To forward engineer aclass diagram,

?? Identify the mapping rules from UML to your implementation language(s) of choice

?? Depending on the semantics of the languages chosen, you may have to constrain the use of certain
UML features. For example, the UML permits modeling of multiple inheritance, but Smalltalk (for
example) permits only single inheritance.

?? Usetagged valuesto specify your target language. A tagged value extends the properties of aUML
building block, allowing the creation of new information in that element’ s specification. You can do
this at the level of individual classesif you need precise control. Y ou can also do so at ahigher level,
such as with collaborations or packages. Collaborations represent the implementation of patterns that
make up a system.

15 for example, the UserInterface

Raytheon Page 33 of 78

SCA Developer's Guide Rev 1.1

5.2 IDL Generation

At any point in the IDL design, thetool chosen to develop the UML model can betold to generate IDL.
Thefollowing is a code snippet of the CF IDL generated from such atool.

//Source file: CF.id

#i f ndef __ CF_DEFI NED

#defi ne __ CF_DEFI NED

/* Cmdentification
9X% %P0 %% %N */

/* This package provides the main framework for all objects within the
radi o. */

nodul e CF

{

nterface File;

nterface Resource

nterface Application
nterface Device;

nterface ApplicationFactory;
nt erface Devi ceManager

/* This type is a CORBA |IDL struct type which can be used to hold
any CORBA basic type or static IDL type. */

struct DataType

{
/* The id attribute indicates the kind of value and type
(e.g.,frequency, preset, etc.). The id can be an UUID string,
an integer string, or a nane identifier. */
string id;
/* The value attribute can be any static IDL type or CORBA basic
type. */
any val ue;

3

/* This exception indicates an invalid conponent profile error. */
exception InvalidProfile

{

1

/* The Properties is a CORBA | DL unbounded sequence of CF

Dat aType(s), which can be used in defining a sequence of nane and
val ue pairs. */

t ypedef sequence <Dat aType> Properties;

/* This exception indicates an invalid CORBA reference error*/
exception I nvali dReference

{
string nseg;

b

Raytheon Page 34 of 78

SCA Developer's Guide Rev 1.1

/* This type is a CORBA unbounded sequence of octets. */
t ypedef sequence <octet> Cctet Sequence;

/* This type defines a sequence of strings */
typedef sequence <string> StringSequence;

/* This exception indicates a set of properties unknown by the
conmponent. */
exception UnknownProperties

{
b

Properties invalidProperties;

5.3 IDL Compilation

IDL must be translated into a high level language to be used in a development process. Thistranslation is
accomplished with an IDL compiler. When invoked, these tools produce C++ (or Java or Ada, etc.) body
(.cpp) & specification (.h) filesto be used for both the client-side (stub) and server-side (skel eton)
operation.

/oLy
\, Developer /

'

| DL

i

™,
ORB A /| source N ORB B
/ L N
.,
, M
.4 : Y- TR
7~ Client ™ IDL-to-Java | IDL-t0-C++ | /" Server
wel ; Compile i i | Dewal
k\?f_""i':?ﬁv ompiler : Complier I\i!:-'tinfmr ;
|
' 4 ¥ > !‘ ¥
I |
app. 1ava gLubs ., java | types, hh| jatubsg, "{‘I saxrv.hh E@l? L1+ t Fl. \.'C:
|
— ___,f—_J : —~ - \;
| B
I
I
|

Java ORB) C++ ORE
Client Server -
Aurn-Tume : Ex bl 1 - iabl Run-Tirme
Library S Recuiatle Library

Figure 5.3-1 Development Processfor Different Development Environments

The client code is specialized to perform client-oriented operations using a particular language and ORB.

The server codeis specialized to perform server-oriented operations using a particular language and ORB.
Thus, the client code and the server code will tend to differ from each other and from the IDL. Each may
have unique pointer types, specialty functions, and class name variations.

Raytheon Page 350of 78

SCA Developer's Guide Rev 1.1

5.4 Client/Server Compilation

The IDL compilation outputs, at a minimum, a client-side (stub)code and server-side (skeleton) code.
Some IDL compilers aso generate implementation templates for each of the interfaces found in the IDL.
However, for our discussions, we'll assumethe IDL compiler generates only aclient and server (.cpp & .h).
The client and server files must then be compiled to ensure the code is syntactically correct.

The server code does not perform the tasks promised by the interface. Instead, it calls servant objects,
written by the implementer, to perform the tasks promised by the interface. The servant objects could be
based on implementation templates generated by the IDL compiler, or they could be designed using
standard object-oriented design methods. If the latter procedure is followed (using a software modeling
tool), the work of the implementer is made more efficient and more accurate if the tool contains a server-
side view of the interface based upon the actual server code.

The client code does not originate requests on the interface. Instead, tasks promised by the interface are
requested by a using object, and the client code relays these requests to the server code. If the person who
programs the using object designs it using a software modeling tool, this work is made more efficient and
more accurate if the tool contains aclient-side view of the interface based upon the actual client code.

Reverse engineering of the client/server filesis one means of automatically generating models of the
server-side view and the client-side view of the interface, thereby providing the reduction in development
effort described in the previous two paragraphs.

5.5 Reverse Engineering

Reverse Engineering is the process of transforming code into a model through a mapping from a specific
implementation language. Reverse engineering resultsin aflood of information, some of whichisat a
lower level of detail than needed to build useful models. From source code, one can reverse engineer back
to classes— thisiswhat is most commonly done. Reverse engineering the client and server files at this
point has several advantages. 1) the implementation classes can be kept updated as the design changes, and
2) The modeling tool typically provides features to generate source code from the model. The auto-
generation of source code can often provide significant reductions in the development phase. To reverse
engineer the client/server files,

Identify the rules for mapping from the implementation language(s) of choice

Point to the desired code to be reverse engineered, and generate a new model or modify an existing one
that was previously forward engineered.

?? Create aclass diagram by querying the model. For example, one might start with one or more classes
then expand the diagram by following specific relationships or other neighboring classes.

7?
»

Raytheon Page 36 of 78

SCA Developer's Guide Rev 1.1

5.6 Creation of Servant Implementation Classes

“Inheritance

Resource 7 Parent
Class
Child Class
i i Attri

Relationship” ttributes

Operations
[
ResourceServant

identifier : string

ResourceServant ()
getPort()

initialize()
releaseObject()
configure()

query()

runTest()

start()

stop()

Figure 5.6-1 Resour ceServant I nheritance

Assuming the IDL-generated client and servant files were reverse-engineered into the model tool, class
diagrams can then be created that depict the various implementation classes. Figure 5.6-1 showsthe
ResourceServant class implementing the CF Resource interface. The Resource interface isthe server-side
skeleton class generated by the IDL compiler. The ResourceServant class shown describes how the
developer plans to implement the Resource interface. In this case, the ResourceServant class has one
attribute and eight operations (not including the constructor). Once the servant design is entered into the
model, the tool can beinstructed to generate source code. The term “inherit” simply means that attributes
at ahigher class-level are common with all the subclasses. The “inherit” featureis shown by ahollow
arrow; the UML symbol for “generalization”.

Raytheon

Page 37 of 78

SCA Developer's Guide Rev 1.1

5.7 Servant Code Generation

Once the servant design (e.g. ResourceServant in Figure 5.6-1) is entered into the model, the tool can be
instructed to generate source code. This provides atemplate with which to begin the coding stage.
Typically, the generated code is placed in preservation sections (provided by the tool) that ensure that any
subsegquent model updates, and therefore code generations, do not overwrite existing software (these
preservation sections are fairly common across code generation tools). Thisallows the model and
implementation to be kept in sync. The following is acode snippet of the ResourceServant.h file. Notice
the inheritance of the reverse-engineered class (in red - class ResourceServant : public
POA_CF::Resource). Also contained in the .h fileisthe prototype for all the operations shown in Figure
5.6-1

/[## begin module%37397F0C6910.cm preserve=no
1 %X% %Q% %Z% %W%
[I## end module%37397F0C6910.cm

#ifndef ResourceServant_h
#define ResourceServant_h 1

/I## begin module%37397F0C6910.additionallncludes preserve=no
[I## end module%37397F0C6910.additionallncludes

[I## begin module%37397F0C6910.includes preserve=yes
[l## end module%37397F0C6910.includes

/I ResourceHelper

#include "ResourceHelper.h”

/I LoggerPortServant

#include "LoggerPortServant.h"
/I CFServer

#include "CFServer.h"

/I## begin module%37397F0C6910.additionalDeclarations preserve=yes
#include "ConnectionServant.h"
[I## end module%37397F0C6910.additionalDeclarations

/I## begin ResourceServant%37397F0C6910.preface preserve=yes
/I## end ResourceServant%37397F0C6910.preface

[I## Class: ResourceServant%37397F0C6910

Il This class implements the CF::Resource interface and provides common
Il attributes and operations for a resource implementations
11

/l## Category: Core CSCI Design Components::Abstract Channel Design
Components%3520FCED8D78; Global

[I## Subsystem: Core CSCI Implementation Components::Abstract Channel Implementation
Components%3563352AFCBO

[I## Persistence: Transient

[[## Cardinality/Multiplicity: n

[I## Uses: <unnamed>%37397F0CCD10;NameUltilities { -> }
[I## Uses: <unnamed>%387C7D167000; { -> }

Raytheon Page 38 of 78

SCA Developer's Guide Rev 1.1

class ResourceServant : public POA_CF::Resource //## Inherits: <unnamed>%3A9E60D9E1A8

{
[I## begin ResourceServant%37397F0C6910.initialDeclarations preserve=yes
[I## end ResourceServant%37397F0C6910.initialDeclarations

public:
/I## Constructors (specified)
[I## Operation: ResourceServant%947682840
ResourceServant (PortableServer::POA_ptr oe_poa, const char *name);

/l## Destructor (generated)
virtual ~ResourceServant();

[l## Other Operations (specified)
[l## Operation: initialize%955649192; C++
virtual void initialize (CORBA::Environment& _env) = 0;

/I## Operation: releaseObject%955649193; C++
void releaseObject (CORBA::Environment& _env);

[l## Operation: query%955649194; C++
virtual void query (CF::Properties& configProperties, CORBA::Environment& _env) = 0;

[I## Operation: configure%955649195; C++
virtual void configure (const CF::Properties& configProperties, CORBA::Environment& _env);

[I## Operation: runTest%955649196; C++
virtual CORBA::Long runTest (CORBA::ULong testNum, CORBA::Environment& _env) = 0;

[I## Operation: start%955649199; C++
virtual void start (CORBA::Environment& _env) = 0;

[I## Operation: stop%955649200; C++
virtual void stop (CORBA::Environment& _env) = 0;

[l## Operation: getPort%959702974; C++
CORBA::Object* getPort (const CORBA::Char* name, CORBA::Environment& _env);

/I Additional Public Declarations
[I## begin ResourceServant%37397F0C6910.public preserve=yes
/1## end ResourceServant%37397F0C6910.public
8

/I## begin ResourceServant%37397F0C6910.postscript preserve=yes
/I## end ResourceServant%37397F0C6910.postscript

/I Class ResourceServant

[I## begin module%37397F0C6910.epilog preserve=yes
/I## end module%37397F0C6910.epilog

#endif

Raytheon Page 39 of 78

SCA Developer's Guide Rev 1.1

5.8 XML Generation

Aswas discussed in section 1.2, the SCA -defined DTDs define exactly what is allowed to appear inside an
XML document. Since those DTDs have already been created/validated (see Appendix D of the SCA), the
developer only needs to be concerned with the XML needed to define the application. Appendix A provides
guidance to those new to XML. Appendix D of this document containsthe XML describing the fictitious
XY Z Application discussed in Section 6. Appendix E contains the XML describing the fictitious XY Z
device discussed in Section 7. Domain Profile files need to follow the format of the Document Type
Definitions (DTDs) provided in Appendix D of the SCA. DTD filesare installed in the domain and need to
have “.dtd” astheir filename extension. There are anumber of commercial XML authoring tools that help
the devel oper concentrate on the content of the XML, and not on the syntax and formatting i ssues.

6 Waveform Development

Implementing any SCA -compliant waveform software follows certain steps. Asisindicated by notationsin
the following list, some steps are discussed elsewhere in this guide, but the entire procedure is outlined here
as achecklist to assist the devel oper to ensure that no step is omitted.

Identify functionality to be provided by the waveform software { section 6.1.2 }

Determine which APl Service Groups are needed { section 6.1.3}

Determine what services are needed beyond the API Service Groups{ section 6.1.4 }

Build UML model of interface { section 6.2 }

Generate IDL from UML model of interface { section 5.2 }

Translate IDL into language-appropriate implementation files{ section 5.3 }

Compile code generated in step 6 { section 5.4 }

Reverse engineer UML model from language-specific implementation files{ section5.5} (optional)

© © N o g~ w DN PE

Build UML model of waveform software { section 6.3 }

=
©

Generate language-appropriate template files for servant and user software { section 5.7}

=
=

. Write servant and user software

=
N

Write XML for each component { section 5.8 }

=
w

Build User Interface { section 8} (optional)

=
Ea

Integrate software and hardware

=
o

Test resultant application

6.1 Functional Allocation to API Design

The sections 6.1 - 6.3 discuss steps 1-4 and 9 in detail. For each step, a short discussion of the processis
followed by an example. This continuing example uses an imaginary waveform, called XY Z, toillustrate
the stepsinvolved in implementing any waveform. The example steps assume that no existing APl meets
the needs of waveform XY Z, so all new APIs are devel oped.

Raytheon Page 40 of 78

SCA Developer's Guide Rev 1.1

6.1.1 Introduction

Section 3 of this guide describes the layered structure inherent in a design based upon the APl Supplement.

Various organizations of components are possible within this general structure. A typical waveform

implementation might consist of the components shown in Figure 6.1-1:

?? Modem receives/transmits the actual signal.

?? Wavefor m provides main implementation of functionality based upon the SCA and API. It has ports
(usually onein each direction) to handle data flow with the application or device that is connected to it.
It must provide CF::Resource functionality (see Section 3), so a CF::Resource port is also shown.
The Core Framework's ApplicationFactory implementation is the only software that uses CF::Port, and
it already has access to the waveform application (obtained when it created the waveform), so CF::Port
is not shown on diagramsin this guide.

?? Ul represents interface to user. Thistopicisdiscussed in general termsin sections 8.1 - 8.3, but often
thisisaspecialty of itsown.

Resource requests ;

control/data to attached app/dev
»

s

G
<

control/data from attached app/dev

=] [~]

Figure6.1-1 Typical Waveform I mplementation

Since this document relates to the work of implementing a waveform application based upon the SCA
and AP, it focuses upon the Wavefor m software; the other components are shaded in Figure 6.1-1.

Raytheon Page 41 of 78

SCA Developer's Guide Rev 1.1

The ports are numbered 0...5 in Figure 6.1-1 to provide a convenient means of identifying a particular port
during discussions later in this guide.

The actual type of connection between the waveform software and the modem depends upon the actual
hardware used. Since this guide does not focus upon that connection, for reasons of simplicity it is shown
asaport (in particular, asport 4) in Figure 6.1-1.

A waveform application can be connected either to another application or to adevice - the design of the
software is not affected by this choice. However, in order to simplify terminology, this guide assumes that
the waveform application is attached to a device.

6.1.2 Identifying Application Functionality

The waveform software must implement the CF::Resour ce and CF:: Port interfaces.
Additional functionality required of the waveform software depends upon the messages that it exchanges
with other applications.

6.1.2.1 Data and Control from Attached Device

For the purposes of this guide, we assume that the waveform application receives the following messages
from the devicethat is attached to it:

a) Prepareto receive data(e.g., audio unit would send thisfor PTT { PushToTalk}).
b) information carried by the signal*®

6.1.2.2 Data and Control to Attached Device
Similarly, the waveform application sends the following messages to the device that is attached to it:

a) prepareto receive data (normally this means " squelch has been broken™)
b) information carried by the signal*®

6.1.2.3 Control from User Interface (Ul)
We assume that the waveform might receive the following commands from the Ul:

a) setlevelsof AGC and noise squel ch used to recognize the presence of asignal
b) set frequency to be used for receiving and sending

c) disabletransmission (regardliessof PTT activity)

d) set mode of operation (VOICE or DATA)

e) set speed of transmission when inDATA mode of operation

f) set power level of transmitter

16 Transmission between digitial radio components may be either digital data or analog ("voice") data that
has been converted into adigital form. In either case, the bits are packaged into a packet structure.
Thisinformation stream consists of a series of these packets.

Raytheon Page 42 of 78

6.1.3 Functional APl Mapping

SCA Developer's Guide Rev 1.1

Using Sections 3.1 through 3.4, an appropriate API primitive service should be identified, if possible, for
each API requirement listed in section 6.1.2. Identifying needed primitive services (operations)
automatically identifies the enclosing Service Groups as the classes needed for the waveform interface.

Table 6.1-1 shows a mapping for the XY Z waveform described in sections 6.1.2.1 - 6.1.2.3. Thistable
shows, for each requirement identified in sections 6.1.2.1-6.1.2.3, which service (contained within which
Service Group) satisfies that requirement. Each waveform variable isimplemented as a class attribute.
Thus, Table 6.1-1 shows these values being set from the Ul by using the CF::Resource::configure operation

even though they could be set using various methods provided by the Physical API.

needed
functionality
{ description}

waveform
port number
in
Figure 6.1-1

API

Service Group
/
Class

primitive service
/
operation

note

6.1.2.1-a

{ prepare to
receive data}

3

6.1.2.1-b
{datafrom app}

3

Physical
RT

SimplePacket
via
TransmitPacket

pushPacket

instantiated with
PayloadType as octet or
other appropriate type

6.1.2.2-a

{prepare to
receive data}

6.1.2.2-b
{datato app}

Physical

SimplePacket
via
TransmitPacket’

pushPacket

instantiated with
PayloadType as octet or
other appropriate type

6.1.2.3a
{ squelch params}

configure

6.1.2.3b
{frequency}

configure

6.1.2.3c
{disable xmit}

Physical
NRT

Transmit_Inhibit

inhibitTransmit

boolean parameter enables
this operation to turn
transmission on or off as
needed

6.1.2.3d
{ voice/data mode}

6.1.2.3e
{ set data speed}

configure

6.1.2.3f
{ set xmit power}

configure

Table6.1-1 Primitive Servicefor Each Requirement

17 The definitions (in the API Supplement) of TransmitPacket and ReceivePacket are identical except for
direction, and the API Supplement provides no further direct guidance. The APl Supplement seemsto
assume that data normally differs between the two directions (for example, received data might include
QOS information, but transmitted data never would). For the simple XY Z example used in this guide,
there is no difference in data between the two directions, so we derive just one concrete UML classto
handle datain both directions and label it "TransmitPacket" (" ReceivePacket" would have been equally
valid asalabel for this class).

Raytheon

Page 43 of 78

SCA Developer's Guide Rev 1.1

The Service Group "TransmitPacket" could be instantiated in both the Physical layer and the MAC layer.
In order to emphasize that this particular instantiation isin the Physical layer, it isreferred to as
"TransmitPacketPhys" for the remainder of this guide.

6.1.4 Mapping Remaining Needs

The APIswere selected to provide commonly needed services. However, awaveform may have needs
which were not anticipated in the API design. In that case, the waveform designer may
?? extend an existing Service Group

?? design an entirely new Service Group

The requirements for the simple XY Z waveform include requirements (e.g., the requirements represented
by grayed-out rows in Table 6.1-1) which do not have a good match in the APIs defined in the SCA API
Supplement or by awaveform procurement document. In Table 6.1-2, those requirements are met by
adding services to the model. In this case, the requirements are met by extending Service Group
"TransmitPacketPhys' (thereby creating " TransmitPacketPhys XY Z") and creating new Service Group

"SetMode".
needed waveform API Service Group primitive service note
functionality | POt fumber / /
{description} Figure 6.1-1 Class operation
6.1.2.1-a 3 Physical | extend new occurs each time status
{prepare to RT TransmitPacketPhys signal Detected changes -
receive data} to create boolean parameter
TransmitPacketPhys XYZ indicates whether signal is
currently present
6.1.2.1-b 3 Physical | SimplePacket pushPacket instantiated with
{datafrom } RT via PayloadType as octet or
TransmitPacketPhys other appropriate type
6.1.2.2-a 2 Physical | extend new occurs each time status
{prepare to RT TransmitPacketPhys signal Detected changes -
receive data} to create boolean parameter
TransmitPacketPhys XYZ indicates whether signal is
currently present
6.1.2.2-b 2 Physical | SimplePacket pushPacket instantiated with
{datato} RT via PayloadType as octet or
TransmitPacketPhys other appropriate type
6.1.2.3a configure
{ squelch params}
6.1.2.3b configure
{frequency}
6.1.2.3c 1 Physical | Transmit_Inhibit inhibitTransmit boolean parameter enables
{ disable xmit} NRT this operation to turn
transmission on or off as
needed
6.1.2.3d 1 Physical | new new parameter from enum
{ voice/data mode} NRT SetMode setMode { VOICE_MODE,
DATA MODE }
6.1.2.3e configure
{ set dataspeed}
6.1.2.3f configure

{set xmit power}

Table 6.1-2 Extending Service Group to Meet All Requirements

Raytheon

Page 44 of 78

6.2 Building API Layer Definitions

6.2.1 Introduction

SCA Developer's Guide Rev 1.1

A purpose in using Service Groupsis to reduce analysis/design effort, since a basic Service Group is
developed just once. Once the appropriate Service Groups have been identified, the next step isto build
these Service Groupsinto amodel that can be used to generate appropriate IDL. The API Supplement
provides precise procedures for constructing and using APIs. Assuming that the needed API does not exist
(according to the section 6.1 introduction to waveform XY Z, this assumption is true of XY Z), new
interfaces should be built using one of the methods summarized here:

1. A concrete Service Group is not changed, sinceit isausable class already.

2. A generic Service Group must be instantiated to create a usable concrete class. In thissituation,
instantiation consists of replacing the generic type(s) with type(s) needed for a particular waveform.

A type must be defined if it is not already defined.

3. If aService Group isto be "extended", a new concrete class must inherit from an existing concrete
class. The extraattributes and/or operations needed by the waveform are placed into the new class.

4. A completely new classis constructed using usual methodol ogy.

Options 2-4 create new concrete classes, which are used in implementing the waveform. They do not
reflect back on the API, but they must conform to API Supplement requirements by specifying interfaces,

behavior, state information and exceptions!®

The API Supplement specifies that scoped names should be used to ensure that each name is unique within
the system,; that is, a separate moduleis created for each waveform, and that modul e contains a separate
module for each API. Within this structure, additional packaging may be used to group together interfaces
that are realized by a given component and tend to be used together.

Once all building blocks are in the model, they may be combined™® so that the final design involves

inheritance from just a small number of classes.

6.2.2 Waveforms with Physical Layer

Table 6.1-2 shows that the simple XY Z waveform
requires Service Group TransmitPacket from

the Physical Real-Time API and Service Groups
SetMode and Transmit_Inhibit from the

Physical Non-Real-Time API.

In order to simplify individual diagrams, each
instantiated building block is put into a separate
diagram, and a special diagram (called "XY Z_Phys")
is created to hold integrating classes. The other CORBA
modules (CF, PacketAPI, PhysicalNonRea TimeAP!,
and Physical Real TimeAPI) contain pre-existing
components which are being reused. The resulting
structure is shown in Figure 6.2-1%°.

18 See section 1.2.2 of the AP Supplement.

-7 <<CORBa&Modules» CF

-7 <<CORBAModules> LogService

-7 ¢<<CORBaModules » PacketaPl

-[[7 <<CORBAModules > PhysicaldanF ealTimedFl
-7 <<CORBAModules > PhysicalFealTimesdPl
-3 «<CORBAModules> 3vZ

E[:] <{CORBaModule: > =vE_Phygsical MRT
rﬂj SetMode

= {TJ <<CORBAModules > ¥vZ_Physical AT
B TransmitPacket

JH] SYZ_Phys

-

Figure6.2-1
Structuring UML Modules

19 For the purposes of this guide, we shall refer to classes created for this purpose as "integrating classes"

20

Raytheon

This example is taken from a Rational Rose implementation - other tool might use different
representation, but the essential structure would be the same.

Page 45 of 78

SCA Developer's Guide Rev 1.1

6.2.2.1 Using Concrete Service Group

Of the Service Groups used in the simple XY Z example, only Transmit_Inhibit uses an existing concrete
class. Figure 6.2-2 showsthe UML for the pre-existing classTransmit_Inhibit.

<<Interface>>
Transmit_Inhibit
(from PhysicalNonRealTimeAPI)

l*‘inhibitTransmit()

Figure6.2-2 UML for Transmit_Inhibit

6.2.2.2 Instantiating Generic Building Block

TransmitPacketPhys is based upon atemplate class. Class SimplePacket has parameters Payload_Type and
Control_Type, which must be replaced by actual typesin order to create a concrete class.

Assuming that datais transmitted octet-by-octet, Payload_Typeis replaced by OctetSequence, which is
defined within the module CF. Assuming that no control information accompanies individual messages,

an empty structure, "NullControlPhys", is created to replace Control_Type.

SimplePacket is instantiated by binding these replacements, resulting in new concrete class
TransmitPacketPhys.

Figure 6.2-3 uses UML notation to depict the relationshipsinvolved in creating class TransmitPacketPhys.

r—————————— 1
: Control_Type I—

Lpayioad-Fype———
<<API Building Block>> —

SimplePacket
(from PacketAPI)
%‘-maxPaonadSize : unsigned short
S4minPayloadSize : unsigned short

“pushPacket(control : in ControlType, payload : in PayloadType) : void|

<<bind>>

<<Interface>>
TransmitPacketPhys

‘pushPacket(controI :in NullControlPhys, payload : in CF::OctetSequence) : void

e N
s N
£7<<Uses>> <<Uses>2
<<CORBAStruct>>| N
NullControlPhys <<CORBATypedef>>|
"'bdummy : char OctetSequence
(from CF)

Figure 6.2-3 UML for TransmitPacketPhys

Raytheon Page 46 of 78

SCA Developer's Guide Rev 1.1

6.2.2.3 Extending A Service Group

Table 6.1-1 shows that instantiating class TransmitPacket is insufficient, because requirements 6.1.2.1-a
and 6.1.2.2-aremain unsatisfied. Table 6.1-2 provides one solution to this problem - we can create an
extended class that includes the operation signal Detected.

Figure 6.2-4 uses UML notation to depict the inherited relationships of the extended class
TransmitPacketPhys XYZ.

In order to include additional functionality, TransmitPacketPhys XY Z is created inheriting from the
concrete class TransmitPacketPhys. The newly-created operation signal Detected is defined in
TransmitPacketPhys XY Z. Since TransmitPacketPhys XY Z inherits from TransmitPacketPhys, it
includes the pushPacket operation.

Control_Type
[Rayload. Type |
<<API Building Block>>
SimplePacket
(from PacketAPI)

@PmaxPayloadSize : unsigned short
@)minPaonadSize : unsigned short

“pushPacket(controI . in ControlType, payload : in PayloadType) : void

i\

<<bind>>

<<Interface>>
TransmitPacketPhys

*pushPacket(controI . in NullControlPhys, payload : in CF::OctetSequence) : void

/// {5 N

v“<<Uses>> <<UsesSs.
<<CORBAStruct>> RN
NullControlPhys <<CORBATYypedef>>
Q‘zdummy : char OctetSequence
(from CF)

<<Interface>>
UserProvider_Physical_XYZ

“signaIDetected(signaIPresent . in boolean) : void

Figure6.2-4 UML for TransmitPacketPhys XYZ

Raytheon Page 47 of 78

SCA Developer's Guide Rev 1.1

6.2.2.4 Constructing A New Service Group

Table 6.1-2 shows that a new class, SetMode, is needed for the XY Z waveform.
Defining this classisthe same as developing IDL for any simple new class.

Figure 6.2-5 shows interface class SetMode using UML notation.

<<Interface>>
SetMode

*‘setMode(newMode . in ModeType) : void

N\
N\,

\«\<uses>>

\,
N\,

N
<<CORBAEnum>>
ModeType
ZVOICE_MODE

“DATA_MODE

Figure6.2-5 UML for SetMode

6.2.2.5 Combining Service Groups to Form A New Interface

Asisdiscussed in section 6.3.1.2, normally a uses port isimplemented as a pointer of an appropriate type.
If aprovides port realizes more than one interface, then a uses port can access only the one type associated
with the uses port pointer. Thus, the implementation phase of software development issimplified if all
interfaces used or provided at asingle port are combined into asingle ("integrating") interface.

Raytheon Page 48 of 78

SCA Developer's Guide Rev 1.1

Figure 6.2-6, which is amaodification of the relevant portions of Figure 6.1-1, shows which operations
connect through each port for the simple XY Z waveform.?:

Control Physical XYZ

Transmit_Inhibit
(6.1.2.3-c) inhibitTransmit

CF::Resource SetMode
(6.1.2.3-d) setMode

N o
UserProvider_Physical XYZ

TransmitPacketPhys XYZ
L ogSenvice::Log (6.1.2.2-a) signal Detected

(6.1.2.2-b) pushPacket

Physical Layer

< —__ 1 Waveform :|—>

[]

Figure6.2-6 Assignment of Portsfor XYZ Physical Layer

TransmitPacketPhys XY Z is used by messages moving upstream from this Physical layer to the "attached
layer"?2. TransmitPacketPhys XY Z is used also by messages moving downstream from the "attached
layer" to this Physical layer. Consequently, TransmitPacketPhys XY Z isrenamed
"UserProvider_Physical_XYZ" for the remainder of this guide.

2L 1n this, and future diagrams, each connection to the Ul is shown as a single arrow, because atypical

stem uses return from "downward" call to communicate results "upward" to Ul.
2 Depending upon system design, this Physical layer could be attached either to the Physical layer of
another application (asis done in this example) or to the MAC layer of the same application (asisdonein
Section 6.2.3). For the remainder of this guide, we use the term "attached layer" to mean the corresponding
layer in another application or higher layer in current application that is connected to the upstream ports of
the layer under discussion.

Raytheon Page 49 of 78

SCA Developer's Guide Rev 1.1

A new class, labeled here as "Control_Physical_XYZ", serves astheinterface with the Ul. Figure 6.2-7
uses UML to define the Control_Physical_XY Z interface class.

<<Interface>> <<Interface>>
Transmit_Inhibit SetMode
(from PhysicalNonRealTimeAPI) (from XYZ_Physical_NRT)
FinhibitTransmit() FsetMode()

<<Interface>>
Control_Physical XYZ

Figure6.2-7 UML for Control_Physical XYZ

6.2.2.6 Completing the Waveform Interface

The procedures described and demonstrated in sections 6.1.1 through 6.2.2.5 determine which interfaces,
including CF::Resource (or, in the case of adevice, CF::Device), are needed by the component. Sections
6.3.1 through 6.3.1.2 show how these design decisions are translated into the implementation of ports.

After design of interfacesis complete, IDL can be generated for the new interfaces. Appendix B contains
the IDL generated from the design for waveform XY Z (presented in sections 6.2.2 through 6.2.2.5).

Raytheon Page 50 of 78

SCA Developer's Guide Rev 1.1

6.2.3 Waveforms with MAC Layer

6.2.3.1 Explanation of the Task

XYZ isan example of awaveform that isimplemented by using Physical layer functionality only.

Now assume that waveform XY Zais created by adding optional error-correcting functionality to XYZ.
Error correcting is provided by Channel ErrorControl BB (see Section 3.3), so XY Zaneedsto include a
MAC layer filter to provide the required error-correcting capabilities. Figure 6.2-8 shows how figure 6.1-1
is modified to provide error-correcting functionality.?®

SR
I
l R }
| W
|
| D_>
L__ 7 Waveform to/from
| MAC Layer attached
|] layer
|
|])
[1
Waveform
Physical Layer
[«

E

Figure 6.2-8 Two-Layer Waveform Application

6.2.3.2 Solution Using MAC Building Block(s)

Two MAC Layer ports, those that connect to the Physical Layer, require interfaces which were previously
defined for the Physical Layer, so only three ports remain to be analyzed.

23 inorder to s mplify drawings, resource and log ports are omitted from this, and later,

waveform drawings

Raytheon Page 51 of 78

SCA Developer's Guide Rev 1.1

Packet structure defined by the MAC layer is the same as that defined by the Physical layer. However, the
XYZ MAC layer must enable an object to turn error checking ON or OFF, so Channel ErrorControl from
the MAC API must be available at both interfaces for ports connecting the XYZ MAC layer to the
upstream-attached layer.

If the MAC Layer detects an error that it cannot correct, it must notify the upstream-attached layer. Thus,
the upstream uses interface includes an additional operation called errorDetected.

Figure 6.2-9 shows the compl ete interface classes- named "Provider MAC_XYZ" and
"User_MAC_XYZ") - for ports connecting the XYZ MAC Layer to the upstream attached layer.

| Control_Type |
!.E’aylnad__‘l'ype.___.
<<API Building Block>>
SimplePacket
(from PacketAPI)
¥ maxPayloadSize : unsigned short
EminPayloadSize : unsigned short

*pushPacket(control : in ControlType, payload : in PayloadType) : void|

<<bind>>

<<Interface>>
TransmitPacketMAC

<<Interface>>
ChannelErrorControl

®FpushPacket(control : in NullControlMAC, payload : in CF::OctetSequence) : void

(from MACAPI)

~
d / \2 *ChannelErrorControl(ErrorControl : in boolean) : void
- / \
<<uses>>_ / \ i
7 <<uses>> / \ >
¥ AN 4
<<CORBAStruct> N /
NullControlMAC <<CORBATypedef>> N /
= “oh OctetSequence //
ummy - char (from CF) N /
N\ /
\, /
N /
N /
N /
N\,
\ //
\\ /

<<Interface>>
Provider_MAC_XYZ

#FsignalDetected(signalPresent : in boolean) : void

0\

<<Interface>>
User_MAC_XYZ

FerrorDetected(errorPresent : in boolean) : voidl

Figure6.2-9 UML for MAC Layer

Although no attributes are shown in this abbreviated example, we assume that the designer does include
attributes corresponding to characteristics of the system. All control of the XYZ MAC layer is
accomplished by using the CF::Resource::configure operation to update these object attributes, so no
further IDL is needed by the XYZ MAC layer.

Raytheon Page 52 of 78

SCA Developer's Guide Rev 1.1

6.2.4 Waveforms with Link Layer

6.2.4.1 Explanation of the Task

XY Zais an example of awaveform which was implemented by using Physical and MAC layer
functionality only. Now assume that waveform XY Zb communicates over an unreliable network link, and
notifies the sender whenever erroneous dataisrejected. Examining Section 3.2 - 3.5 reveals that the most
straightforward way to provide error notification capability is to include an LLC layer implementing
connectionless service. Figure 6.2-10 shows how figure 6.2-8 is modified to provide this added
functionality.

T
o
o
o
o _—— .
| |
| |
I I . 5 5
: L __ 1 Waveform to/from
network
l I LLC Layer :|4
|
|

MAC Layer
[]

] Waveform
|
|
|

LI L]

Waveform
Physical Layer

[]

Modem

Figure 6.2-10 Three-Layer Waveform Implementation

Raytheon Page 53 of 78

SCA Developer's Guide Rev 1.1

The LLC API specifiesinterfaces for the Connectionless mode. Figure 6.2-11 shows structures needed to
support these interfaces. The actual interfaces are shown in Figures 6.2-12 (downstream interface - named
simply "Provider") and 6.2-13 (upstream interface - named simply "User"), respectively.

[Control_Type h——
Leayload—Type-——
<<API BuildingBlock>>
Packet

maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(priority : in octet, control : in Control Type, payload : in PayloadType) : void|
spaceAvailable(priorityQueuel D : in octet) : short

enableFlowControl Signal s(enable : in boolean) : void

enabl eEmptySignal (enable: in boolean) : void
|setNumOfPriorityQueues(numOfPriorities: in octet) : void

7 [N
// \
<<bind>>/ \
// \
7/ \\
<<Interface>> \
ProviderQueue \\
SEmaxPayloadSize : unsigned short \ .
SEminPayloadSize : unsigned short \<<b"'|d>>
\
®pushPacket(priority : in octet, control : in RequestHeaderType, payload : in CF::OctetSequence) : voi \
*spaceAvailable(priorityQueuelD : in octet) : unsigned long \
*enableFlowControlSignals(enable : in boolean) : void \\
enableEmptySignal(enable : in boolean) : void \
#setNumOfPriorityQueues(numOfPriorities : in octet) : void \
\ \
\\ \\
\ <<Interface>>
\\ UserQueue
\ ix:maxPayloadSize : unsigned short
<<uses> \ & mainPayloadSize : unsigned short
\
\\ BpushPacket(priority : in octet, control : in IndicatorHeaderType, payload : in CF::OctetSequence) : void
\ ®spaceAvailable(priorityQueuelD : in octet) : short
\ ®enableFlowControlSignals(enable : in boolean) : void
\ ®enableEmptySignal(enable : in boolean) : void
\\ ®setNumOfPriorityQueues(numOfPriorities : in octet) : void
\ /7
\ /
<<uses>3\ 7/ <<uses>>
\ //
\ /
\ <<uses>
<<CORBAStruct>> \ // <<.CORBAS["JC[>>
\ IndicatorHeaderType
RequestHeaderType \l pd BesiatonAdd SSAP AT T
— - estinationAddress : ressType
""d:?r'i?;‘_'znn/:?dnr:sslo'nDLSAPAddTeSSType <<%ORBSATypedef> ZisourceAddress : DLSAPAddressType
=p - unsig| 9 ctetSequence ZlisGroupAddress : boolean
(from CF)
\\\ <<uges>> //
<<u353>>\\ //<<uses>>
NQ yd
N V4
<<CORBAStruct>>
DLSAPAddressType

&sap : unsigned long
address : CF::OctetSequence]

Figure6.2-11 UML for LLC Layer

Raytheon Page 54 of 78

SCA Developer's Guide Rev 1.1

<<Interface>>
ProviderQueue

maxPayloadSize : unsigned short
?;-minPayloadSize : unsigned short

#oushPacket()
‘spaceAvaiIabIe()
*‘enableFIowControlSignals()
#enableEmptySignal()
HsetNumOfPriorityQueues()

\
L

A

<<Interface>>
PacketSignals

signalHighWatermark()
signalLowWaterMark()
signal Empty/()

i

N

\
N

<<Interface>>
Provider

Figure6.2-12 UML for LLC Provider Interface

<<Interface>>
UserQueue

IQ}-maxPaonadSize : unsigned short
EfmainPayloadSize : unsigned short

BoushPacket()
®spaceAvailable()
&enableFlowControlSignals()
®enableEmptySignal()
SsetNumOfPriorityQueues()

<<Interface>>
PacketSignals

signalHighWatermark()
signalLowWaterMark()
signal Empty/()

<<Interface>>

User

*‘signalError(destinationAddress :in DLSAPAddressType, error : in PacketErrorType) : void

7

/
/
/

<<uses>>/
/

/
/
/

I/
Ll’

<<CORBAStruct>>
DLSAPAddressType

\
\
\

\
\\<<uses>>

\
\
\
\

\I
N

Z¥sap : unsigned long
s#address : CF::OctetSequence

<<CORBAStruct>>
PacketErrorType

ziusagekError : ServiceErrorType
zrerrNo : unsigned long

Figure6.2-13 UML for LLC User Interface

Raytheon

Page 55 of 78

SCA Developer's Guide Rev 1.1

6.2.5 AssemblyController

Waveform XY Zb, as developed in sections 6.2.4 - 6.2.4.1, consists of three independent layers. Thisthree-
layer design is consistent with APl Supplement requirements and with I SO network design methodol ogy.
However, the SCA requires that the Application implementation delegate all Resource operations other
than getPort to a software component called the "Assembly Controller", which isidentified by the
assemblycontroller element of the Software Assembly Descriptor (SAD) XML file. Thus, an
AssemblyController is added to Waveform XY Zb, resulting in Waveform XY Zc, as shown in

Figure 6.2-14.

L
Assembly
Controller
J L
| | !
| |
| L
I |
I |
| —
| L — ___| Waveform toffrom
LLCL attached app
| I ¥ | e———=
[L]
i 4
|
| Waveform []
|_____| MACLaer ||
Waveform [1]

Physical Layer D

Modem

Figure 6.2-14 Waveform with Assembly Controller

In thisdesign, ports are used to connect the AssemblyController to other waveform components. These
ports enable connections between the components to be defined in the SAD XML file. The ports would not
be needed if connection logic for the AssemblyController were hard-coded into the AssemblyController or
if none of the connections were needed.

Raytheon Page 56 of 78

SCA Developer's Guide Rev 1.1

Often, the AssemblyController implements only functionality that was already located somewhere in the
waveform software design. That is, no new interfaces will be realized in the AssemblyController. In that
case, whichistrue for our XYZ Waveform example, no new interfaces are needed, so nothing needsto be
added to the IDL.

6.3 Refining API Definitions with Implementation Design

6.3.1 Use of Interfaces

Figure 6.3-1 is excerpted and modified from Figures 6.2-6, 6.2-8, and 6.2-9 to focus on the use of ports by
waveform software. Each port is |abeled with either a"U" (for uses port) or a"P" (for provides port)®*.

A uses port requests data or service from another component, while a provides port returns requested data
or performs arequested service. An SCA -compliant application is built using CORBA to implement
client-server connections. Under this model, software assumes the role of client when it is calling through
auses port, and the role of aservant (within a server) when it is answering at a provides port.

{User MAC_XYZ}

{ Resource}
------- A
P2o
{Control_Physical_XY Z} ’i‘
_______ -/
|
|
Waveform
{ Resource} : 4—— —|: MAC Layer U2z
_______ 1 I Uz {Log} :I
sl /
Uz, {Log}] f P20 Uzo
<« — thyi}égffgyrel‘rl — Uy, {UserProvider_Physical_XYZ}

P11 {UserProvider_Physical_XYZ}

[]

{Provider_MAC_XYZ}

Figure6.3-1 Port Connectionsfor Physical and MAC Layers

Further examining Figure 6.3-1, we can see that a message that is sent by the MAC layer from port Uy is
the result of a message that was received at port P,;. Correspondingly, a message that is sent by the MAC
layer from port U,; isthe result of a message that was received at port Pag.

24 The name of the interface used or provided at the port isincluded in braces{}.

Raytheon Page 57 of 78

SCA Developer's Guide Rev 1.1

6.3.1.1 Implementing A Provides Port

Since a Provides Port isimplemented as servant software, the waveform software must inherit from the
IDL-generated skeleton class for the interface at that port, as described in section 5.6. The waveform
software "realizes" this class by implementing each operation included in the class. If functionality for
some operation in the classis not appropriate for the waveform, then the software should implement the
operation anyway, even if it isa"stub" operation (i.e., an operation with no instructions)®>.

6.3.1.2 Implementing A Uses Port

Since aUses Port isimplemented as client software, the waveform software calls the corresponding servant
software. To accomplish this, the client software maintains a pointer (of the correct type) to the servant.
Good practice suggests using a CORBA _var type, because this "intelligent pointer" relieves the
programmer of most responsibilities relating to memory management. Before the pointer can be used,
however, the operation connectPort() must be called to establish avalue for it.

6.3.1.3 Implementing Multiple Ports

Our examples tend to show exactly one Uses Port connected to exactly one Provides Port, but the actual
requirements allow one-to-many, many-to-one, and many-to-many connections. Connecting many usersto
one provider ("many-to-one") has no effect on the servant software, because the result is simply that more
than one pointer contains the address of the provider object.?® Connecting many providers to one user
("to-many") adds complexity - it requires that the simple pointer to the provider be replaced by an array®’
of pointers, and the software must loop through the array each time the port is used.

6.3.1.4 Implementing getPort()

An application can consist of one or more CORBA objects. Each application is created by the Core
Framework's A pplicationFactory implementation according to instructions provided in the appropriate
XML document. The XML specifies particular objects to be created by the ApplicationFactory; each of
these objects must implement the CF::Resource interface. An object created by the ApplicationFactory
may create and activate other objects?®, but the ApplicationFactory is not aware of them. I an object
(which we shall call Ag) creates another object (which we shall call A1), the ApplicationFactory invokes the
getPort operation implemented by Ao to locate portslocated in A ;. The designer of the application hastwo
choicesfor handling a getPort request for portsthat arelocated in A ;.
?? the getPort operation implemented by A provides A; port addresses to the Core Framework
?? the getPort operation implemented by A o delegates the request to some operation (perhaps even
another getPort) implemented by A ;.

25 of course, under some conditions, invoking an error return would be more appropriate.
26 Figure 6.3-4 is an exampl e showing three uses ports connected to the provides L og port

27 or CORBA sequence

28 These additional objects need not implement CF::Resource.

Raytheon Page 58 of 78

SCA Developer's Guide Rev 1.1

6.3.2 Model for Physical Layer

6.3.2.1 Unified Design

Figure 6.3-2 shows a single-class implementation design for waveform XY Z's physical layer.

This object inherits from CF::Port so that it can connect each uses port to a corresponding provides port.
It also inherits from each interface implemented as a provides port, and has an association for each uses
port?° In thisexample design, asingle operation ("performAction”) isincluded to provide an interface
with the modem hardware.

Resource Control_Physical_XYZ
(from POA _CF) (from POA_XYZ)

UserProvider_Physical_XYZ

Port (from POA_XYZ_Physical RT)

(fromPOA_CF)

XYZ_Physical
q?achqueIch :long=0
noiseSquelch :long =0
Exfrequency : long = 37000000
Q:rtanpeed : long = 2400
Q:rpowerLeveI :long=0

“configure()
‘connectPort()

Log_var -logVar _userVar| UserProvider_Physical_XYZ_var

(from LogService) [S—@ “disconnectPort() [= (from XYZ_Physical_RT)
"getPon()

SinhibitTransmit()
Sinitialize()
Squery()
"releaseobject()
“runTest()
‘setMode()
“signalDetected()
"pushPacket()
#performAction()

Figure 6.3-2 Unified Design for XY Z's Physical Layer

29 psal ready described in section 6.3.1.2, the code generated from this part of the model would be pointers
of theright type. For example, logVar would be a pointer which is able to point to an implementation of
LogService::Log, and userVar would be a pointer able to point to an implementation of
UserProvider_Physical_XYZ. The CoreFramework's ApplicationFactory implementation would be
instructed via XML to invoke connectPort to link the first pointer to the actual |og provides-port and the
second pointer to an actual physical-layer provides-port.

Raytheon Page 59 of 78

SCA Developer's Guide Rev 1.1

6.3.2.2 Partitioned Design

Figure 6.3-3 shows a multiple-class implementation design for waveform XY Z's physical layer.

XY Z_Physical_Control, which is created directly by the Core Framework as described in section 6.3.1.4,
provides resource and control ports. XYZ_Physical_Packets, which is created by XY Z_Physical_Control,
provides the data handling port. Uses ports are assigned to objects in such away asto simplify program
design. XYZ_Physica_Communicate is an additional object containing (static) common operations
needed by operations in the other objects; the "performAction()" operation, which provides an interface
with the modem hardware, was included in XY Z_Physical_Communicate. The application has two uses
ports for logging, because each object may have a need to make entriesin the Log. The XML showstwo
different ports, each having a different name, to be attached to the Log object. The getPort operation
implemented by XY Z_Physical_Control reports the address of XY Z_Physical_Control for one log object
name, and the address of XY Z_Physical_Packets for the other name. Both objects inherit from CF::Port,
because both provide connectPort services. *°

Control_Physical_XYZ Resource 5
(from POA_XYZ) (fromPOA_CF) ort UserProvider_Physical_XYZ
(fromPOA_CF) (from POA_XYZ_Physical_RT)
N il
\
VA T
|’(\ T 1Y 2 4
\ / / \ /
\ / / \ /
\ / /
/ N /
\ | / \, /
\ / / \\ /
XYZ_Physical_Control Log_var \\ //
§¥lagcsquelch : long = 0 - \ /
f LogS
fanoiseSquelch : long = 0 (from LogService) \\ /
fafrequency : long = 37000000) . \\ /
SkitxnSpeed : long = 2400 | Jogvar -logVar~ /
fapowerLevel : long = 0 "W XYZ_Physical_Packets
Sconfigure() _userVar | UserProvider_Physical_XYZ_var
—~ -packPtr . *pushPacket() < .
= el @—=>{ (from XYZ_Physical_RT
o, K D o Pt
% StconnectPort()
~9‘?tP9rt() SdisconnectPort()
o . ,
<< >>
SreleaseObject() \\\ises <<uses>/>/
HrunTest() N /
SsetMode() N P
R)
inhibitTransmit() XYZ_Physical_Communicate

BperformAction()

Figure 6.3-3 Partitioned Design for XYZ's Physical layer

After the design is complete, the model is used to generate source code templates as described in section
5.7, and the programmer adds any needed details. Appendix C contains a C++ header file generated from
the design presented in this section.

30 The designs presented in this guide are not intended to be complete. For example, local communications
(inthis case between XY Z_Physical_Control and XY Z_Physical_Packets) are not included. The links
between these objects are standard links (not involving CORBA), so this communicating could be done by
any means (function calls, queues, etc) normelly used to communicate between local objectsin the
implementation language of choice, assuming of course, that SCA requirements are satisfied.

Raytheon Page 60 of 78

SCA Developer's Guide Rev 1.1

6.3.3 Model for MAC Layer

Figure 6.3-4 shows a partitioned design for the XYZ MAC layer. Asistrue of all multi-object designs, one
object is created directly by the Core Framework's ApplicationFactory implementation. This object
(XYZ_MAC_Control), which provides resource and control ports, isresponsible for creating the other
objects. Thereisanatural pairing of ports based upon the flow of messages. This natural pairingis
reflected in the assignment of ports to objects, as one object moves messages "downstream™ and the other
moves messages "upstream".

UserProvider_Physical_XYZ Port

(from POA_XYZ_Physical_RT) (from POA_CF) Provider_MAC_XYZ
(from POA _XYZ_MACQC)

N

Resource
(from POA_CF)

XYZ_MAC_Upstream XYZ_MAC_Downstream
:cgnnectPort() %connectPort()
‘d|sc0nnectP0rt() *disconnectPort()
1.p'ushP.alcket() %pushPacket()

signalDetected() _upstreamvar signalDetected()
p -downstreamVar 9
‘ XYZ_MAC_Control ‘ChanneIErrorComrol()
%:—errorControlOn :boolean =0 '
"'configure()
"connectPort()
“'disconnectPort()
"getPort()
Finitialize()
Fquery()
‘releaseobject()
1'runTes,t()
-userVar -logYar
userVar
User_MAC_XYZ_var

Log_var

(from XYZ_MAC) (from LogService),

UserProvider_Physical_XYZ_var
(from XYZ_Physical RT)

Figure 6.3-4 Partitioned Design for XYZ'sMAC Layer

Raytheon Page 61 of 78

SCA Developer's Guide Rev 1.1

6.3.4 Model for Link Layer

Functionally, the XY Z Link layer performs tasks that are completely different from those performed by the
MAC layer. However, the MAC layer handles two flows of messages, one downstream from an attached
layer to the Physical layer, and one upstream from the Physical layer to the attached layer. Likewise, the
Link layer handles two flows of messages, one downstream from an attached layer to the MAC layer, and
one upstream from the MAC layer to the attached layer. Not surprisingly, then, the structure of the Link
layer shown in Figure 6.3-5 is very similar to the structure of the MAC layer shown in Figure 6.3-4. In this
particular case, the API includes several operations that are not needed for our application (in this example,
that would include all of the operations related to flow-control). C++ errorstend to occur if there is no
implementation for an operation included in the interface, so the implementation code should include each
of these operations (even if the code does nothing).

Provider_MAC_XYZ Port
(from POA_XYZ_MAC) (from POA_CF)

A A

Provider
(from POA_LogicalLinkControlARI)

A

Resource
(from POA_CF

XYZ_LLC_Upstream XYZ_LLC_Downstream
‘cgnnectPort() ®connectPort()
HdisconnectPort() B disconnectPort()
‘pushPacket() -upstreamVar XYZ_LLC_Control *enabIeEmptySignaI()
HsignalDetected() SenableFlowControlSignals()

’ Bconfigure() -downstreamV. @pushPacket()
‘conneclPon() SisetNumOfPriorityQueues()
=disconnectPort() SsignalEmpty()

SgetPort() ‘signaIHighWatermark()
Binitialize() SsignalLowWaterMark()
ey SispaceAvailable()
SreleaseObject() ‘
SrunTest()
-userVlar -logyar -logVar
-uservar
User_var
(from LogicalLinkControlAPJl) Log_var User_MAC_XYZ_var

(from LogService, (from XYZ_MAC)

Figure6.3-5 Partitioned Designed for XYZ'sLLC Layer

Raytheon Page 62 of 78

SCA Developer's Guide Rev 1.1

6.3.5 Model for AssemblyController

The AssemblyController connects to three different layers, but only two ports are involved, because most
of the activity occurs on the CF::Resource interface. The CF::Resource uses port ispresented asa1:3
association named layer ResourceVar. The XML presents association layer Resour ceVar as three different
ports, each port having a unique name, and the XML instructs the Core Framework's A pplicationFactory
implementation to connect each of these ports to the CF::Resource port of one of the layers. Association
layer ResourceVar could be implemented in various ways, but acommon approach consists of using an
array of three pointers, each pointer corresponding to one of the names used by the XML when instructing
the Core Framework. The UML for the AssemblyController is shown in Figure 6.3-6.

Resource Control_Physical_XYZ
(from POA_CF) (from POA_XYZ)

JA

Port
(from POA_CF)

Log_var XYZ_AssemblyController
- . -logVar
(from LogService)<<————@

1
-layerResourceVar
-layerControlVar
Control_Physical_XYZ_var 3 | Resource_var
(from XYZ) (from CF)

Figure6.3-6 Design for XYZ's Assembly Controller

Raytheon Page 63 of 78

SCA Developer's Guide Rev 1.1

7 Device Creation

7.1 Device Interfaces

The device interfaces are for the implementation and management of logical Devices within the domain.
The device interfaces include Device, L oadableDevice, ExecutableDevice, and AggregateDevice. The
devices within the domain can be simple devices with no loadable, executable, or aggregate device
behavior, or devices with a combination of these behaviors. Device Management is accomplished by the
DeviceManager interface, which isresponsible for creation of logical Devices and launching service
applications on these logical Devices.

7.1.1 Device

A Deviceisatype of Resource within the domain having the requirements as stated in the Resource
interface. Thisinterface defines additional capabilities and attributes for any logical Devicein the domain.
A logical Deviceisafunctional abstraction for a set (e.g., zero or more) of hardware devices and provides
the following attributes and operations:

Software Profile Attribute — This SPD XML profile defines the logical Device capabilities (data/command
uses and provides ports, configure and query properties, capacity properties, status properties, etc.), which
could be asubset of the hardware device' s capabilities.

State Management & Status Attributes — This information describes the administrative, usage, and
operational states of the device.

Capacity Operations - In order to use adevice, certain capacities (e.g., memory, performance, etc.) must be
obtained from the Device. The capacity properties vary among devices and are described in the Software
Profile. A device may have multiple allocatable capacities, each having its own unique capacity model.

I

<<Interface>>
Resource

<<Interface>>
Device

«fusageState : UsageType
Z#adminState : AdminType
<#operationalState : OperationalType
=#softwareProfile : string

=#label : string

Zs#compositeDevice : AggregateDevice

'*‘alIocateCapacity(capacities . in Properties) : boolean|
""dealIocateCapacity(capacities . in Properties) : void

/ \
I \
[}

uses N
v N
<<CORBATypedef>> <<Interface>>
Properties AggregateDevice

Figure7.1-1 Device CORBA Interface UML

Raytheon Page 64 of 78

SCA Developer's Guide Rev 1.1

The Device interface provides the following operations:

allocateCapacity() : boolean

The allocateCapacity operation is used to allocate properties available to the device; the value
returned reports whether the allocation was successful. In the simplest case, the property isasimple
binary value (IDLE or BUSY), and the allocateCapacity operation is used to reserve the device (the
operation would return FALSE if the device wasin use already).

deallocateCapacity() : void

The deall ocateCapacity operation is used to deallocate properties that had previously been allocated
by use of the allocateCapacity operation. In the simplest case, the deallocateCapacity operation is
used to return adeviceto itsIDLE condition so that it will be available to other users.

7.1.2 LoadableDevice

Thisinterface extends the Device interface by adding software loading and unloading behavior, thereby
enabling software to control what isin memory available to the device. Thus, FPGA contents can be
changed, and/or adigital signal processor can run achoice of code (for example, either AM or FM).

<<Interface>>
Device

susageState : UsageType
adminState : AdminType
zioperationalState : OperationalType
zsoftwareProfile : string
zlabel : string
zicompositeDevice : AggregateDevice

%allocateCapacity()
HideallocateCapacity()

A
JA)
|
|
1
<<Interface>>
LoadableDevice

Foad(fs : in FileSystem, fileName : in string, loadKind : in LoadType) : void
.‘unload(fileName 2 in string) : void

/ \
/ \
/ \
/ \
./ N
IA AN
<<CORBAEXxception>> <<Interface>>
InvalidFileName FileSystem

Figure 7.1-2 L oadableDevice CORBA Interface UML

The LoadableDevice interface provides the following operations:

load() : void
The load operation is used to load afile into memory. If the specified fileis aready loaded, aload
count isincremented, but the fileis not reloaded.

unload() : void

The unload operation causes the load count to be decremented. If the count has reached zero
(i.e.., no more users remain for the specified file) then the memory is returned to itsdefault condition.

Raytheon Page 65 of 78

SCA Developer's Guide Rev 1.1

7.1.3 ExecutableDevice

Thisinterface extends the LoadableDevice interface by adding execute and terminate behavior, thereby
enabling software to determine exactly when programs will execute on the device. Thus, execution timeis
not necessarily connected to load time (e.g, a program need not be "load-and-go").

<<Interface>>
L oadableDevice

=unload()

i

<<Interface>>
ExecutableDevice

-"execute(name: in string, options: in Properties, parameters : in Properties) : ProcessID_Type
Btermi nate(processld : in ProcessID_Type) : void

e
e \\\
. 7 \
ya N
<<CORBATYypedef>> <<CORBAException>>
Properties InvalidFileName
*Pmsg : string

Figure 7.1-3 ExecutableDevice CORBA Interface UML

The ExecutableDevice interface extends the LoadableDevice interface by adding these operations:

execute() : Process ID_Type

The execute operation is used to start the program, allowing the initiatiating software to pass
parameters that will be received by the program in an argv vector as used by a standard POSI X exec
call.

terminate() : void
The terminate operationis used to end a program that was started by use of the execute function

Raytheon Page 66 of 78

SCA Developer's Guide Rev 1.1

7.1.4 AggregateDevice

The AggregateDevice interface provides behavior that can be used to add and remove Devices from a
composite device. Thisinterface can be provided viainheritance or as a"provides port” for any device that
is capable of an aggregate structure®'. Aggregated Devices use this interface to add or remove themselves
from a composite device when being created or torn-down.

<<Interface>>
AggregateDevice

«#devices : DeviceSequence

""addDevice(associatedDevice . in Device) : void
#removeDevice(associatedDevice : in Device) : void

\,
/

// \\\
/ N\
I// \\
4 \\V .\:\
<<CORBAEXxception>> <<Interface>> <<CORBATypedef>>
InvalidObjectReference Device DeviceSequence
Q:rmsg : string

Figure 7.1-4 AggregateDevice CORBA Interface UML

7.1.5 DeviceManager

The DeviceManager interface is used to manage a set of logical Devices and services. Theinterfacefor a
DeviceManager is based upon its attributes, which are:

?? Device Configuration Profile - amapping of physical device locations to meaningful labels (e.g.,
audiol, seriall, etc.), along with the Devices and services to be deployed

File System - the FileSystem associated with this DeviceManager

Device Manager |dentifier - the instance-unique identifier for this DeviceManager

Device Manager Label - a meaningful name given to this DeviceManager

Registered Devices- alist of Devices that have registered with thisDeviceManager

Registered Services- alist of Servicesthat have registered with thisDeviceManager

i SN N, i S

31 Thisinterfaceis most useful for situationsin which asi ngle piece of hardware contains unitsthat are
handled as separate devices by an SCA application.

Raytheon Page 67 of 78

SCA Developer's Guide Rev 1.1

<<Interface>> = @ ————————~

PropertySet <<Interface>>
PortSupplier

Bconfigure()
*queryo *getPort()
< 7
I &
\ |
\ /
\ |

\ I
<<Interface>>
DeviceManager

z=deviceConfigurationProfile : string
«:fileSys : FileSystem

s=identifier : string

zalabel : string

zaregisteredDevices : DeviceSequence
siregisteredServices : ServiceSequence

BWregisterDevice(registeringDevice : in Device) : void
SunregisterDevice(registeredDevice : in Device) : void

*‘shutdown() : void

*registerService(registeringService . in Object, name : in string) : void
%WunregisterService(registeredService : in Object, name : in string) : void
#getComponentimplementationld(componentinstantiationld : in string) : string

// // \\ \\\\
// | uses \\\ \\\
A W N N
<<Interface>> <<CORBATypedef>> <<Interface>> <<CORBAEXxception>>
FileSystem DeviceSequence Device InvalidObjectReference
%:msg : string

Figure 7.1-5 DeviceM anager CORBA Interface UML

Raytheon

Page 68 of 78

SCA Developer's Guide Rev 1.1

7.1.6 Defining the Device

This section describes the process of selecting the appropriate device interfaces for adevice
implementation, and the relationship to the device XML.

7.1.6.1 Selecting the Appropriate Device Interface

Asisindicated in section 7.1, the device can be of type Device, LoadableDevice, or ExecutableDevice.*
In addition to the device type, the designer must also select a means of communicating with the
waveform(s) that make use of the device.

As an example, we consider an audio device that is attached to the XY Z waveform described in sections
6.2.2 and 6.3.2. The audio device will have generic audio ports. A simple software application would be
inserted between the device and the XY Z waveform to translate between the two data port forms.

Figure 7.1-6 shows which interface is associated with each of the device's ports.

downstream data
and r=——==""
upstream flow control ’i‘ {Device}

~—] Audio
Device j - T_cﬁ}’

«— |

upstream data
and
downstream flow control

Figure 7.1-6 Audio Device Ports

32 Sincean AggregateDevice is acomposite of devices, the logic presented in Section 7.1.6.1 would be
applied multiple times for an AggregateDevice.

Raytheon Page 69 of 78

SCA Developer's Guide Rev 1.1

7.1.6.2 Designing a Device Servant

Although the specifics of inheritance are different, designing a device servant isvery similar to designing a
waveform application. If the "downstream” and "upstream" data flows and flow controls are the same, the

audio device realizes only two interfaces; Device (from section 7.1.1) and an appropriate interface built
from 1/0O API Building Blocks.

Using UML notation, Figure 7.1-7 shows asimple |/O interface.

1
If‘ontroI_Type [—— <<Interface>>
n ——1 PacketSignals
<<API Building Block>> (from PacketAPI)
Packet
(from PacketAPI) 5 gnal HighWatermark (priorityQueuel D : in octet) : void
ﬂ,-maxPaonadSize : unsigned short “‘signalLowWaterMark(priorityQueuelD :inoctet) : void
ﬂ,-minPaonadSize : unsigned short ‘s‘gnalEmpty():void
SpushPacket(priority : in octet, control : in ControlType, payload : in PayloadType) : void ,f_\
®spaceAvailable(priorityQueuelD : in octet) : short
®enableFlowControlSignals(enable : in boolean) : void
SenableEmptySignal(enable : in boolean) : void
®setNumOfPriorityQueues(numOfPriorities : in octet) : void
___________ <<CORBAStruct>>
<:C(|)REA‘I}ypz$ef>> AnalogControlType
nalograyoad’ype %PayloadSize : unsigned short
E=Payloadld : unsigned short
‘\ <<bind>>
\\ /71
<<uses>\>\ /'<<uses>>
\
\ /
\ /
\\ //
\ /
<<Interface>>
<<Interface>> AnalogPacketSignals
AnalogAudioPacket
!?maxPaonadSize : unsigned short = 160 i
ErminPaonadSize : unsigned short =1 /SJ
®pushPacket(priority : in octet, control : in AnalogControlType, payload : in AnalogPayloadType) : void //
®spaceAvailable(priorityQueuelD : in octet) : short //
®enableFlowControlSignals(enable : in boolean) : void /
®enableEmptySignal(enable : in boolean) : void /
®setNumOfPriorityQueues(numOfPriorities : in octet) : void //
= /
\7. /
J\\\ /
AN /
o /
~ /

<<Interface>>
UserProvider_AnalogAudio

Figure 7.1-7 UML for AudioDevice

Raytheon Page 70 of 78

SCA Developer's Guide Rev 1.1

Using UML notation, Figure 7.1-8 shows a partitioned design for the resulting audio device.

Device
(from POA_CF,

Port
(from POA_CF)

AudioDevice

8allocateCapacity()
&configure()
SconnectPort()
&deallocateCapacity()
&disconnectPort()
SgetPort()
Sinitialize()
%load()

Fquery()
&releaseObject()
SrunTest()
&unload()

Log_var
(from LogService)

'-Iog%

-XyzPtr

-logVvar

UserProvider_AnalogAudio
(from POA_IOAPI)

A

AudioDeviceXYZ

#connectPort()

0

SdisconnectPort()
SpushPacket()
#signalDetected()

-userVar

UserProvider_AnalogAudio_var
(from IOAPI)

Figure 7.1-8 Design for Audio Device

Raytheon

Page 71 of 78

SCA Developer's Guide Rev 1.1

7.1.6.3 Device Configuration Descriptor

This section describes the XML elements of the Device Configuration Descriptor (DCD) XML file. The
deviceconfiguration element is the root element of the DCD. The DCD is based on the SAD (e.g.,
componentfiles, partitioning, etc.) DTD. Theintent of the DCD isto provide the means of describing the
componentsthat areinitially started on the CF DeviceManager node, how to obtain the CF
DomainManager object reference, connections of servicesto components (CF Devices, CF
DeviceManager), and the characteristics (file system names, etc.) for a CF DeviceManager. The
componentfiles and partitioning elements are optional; if not provided, thisimplies no components are
started up on the node, except for a CF DeviceManager. |If the partitioning element is specified then a
componentfiles element must also be specified.

The deviceconfiguration element’sid attribute is a unique identifier within the domain for the device
configuration. Thisid attributeisaUUID value as specified in section 4.1. The name attribute is the user-
friendly name for the CF DeviceManager’s label attribute.

<<DTDElement>>
deviceconfiguration

@id : 1D
wname : CDATA

|

<<DTDSequenceGroup>>
deviceconfiguration_grp

1} 0.1 (from deviceconfiguration) o
<<DTDElementPCDATA>> \ <<DTDElement>>

description 0.1 filesystemnames
2 N\ {6

<<DTDElement>> <<DTDElement>>
devicemanagersoftpkg 0.1 0.1 0.1 domainmanager
3} @ 5}
<<DTDElement>>| [<<DTDElement>>| |<<DTDElement>>
componentfiles partitioning connections

Figure 7.1-9 deviceconfiguration Element Relationships

A DCD should be provided as part of the software documentation for a DeviceManager implementation.
The DCD should contain all of the mandatory XML elements as well as many of the optional elements.
For example, the description element of the DCD is optional but should be provided. The description
element can be used to provide text information about the DeviceManager implementation and how the
DCD is utilized by the implementation. As another example, the fileSystems element is optional but could
be provided. The fileSystems element documents the names of the host file systems for which the
DeviceManager implementation should create FileSystem servers components. |If the fileSystems DCD
element isnot provided the description element or XML comment should indicate whether a system
integrator could add the fileSystems XML element at deployment time. Thiswould indicate that the
DeviceManager implementation has the capability to generically create CF::FileSystemsfor the host file
systems specified by the fileSystems DCD element.

Raytheon Page 72 of 78

SCA Developer's Guide Rev 1.1

7.2 Device Package Descriptor

The SCA Device Package Descriptor (DPD) isthe part of a Device Profile that contains hardware device
Registration attributes, which are typically used by a Human Computer Interface application to display
information about the device(s) resident in a SCA -compliant radio system. DPD information isintended to
provide hardware configuration and revision information to aradio operator or to radio maintenance
personnel. A DPD may be used to describe a single hardware element residing in aradio or it may be used
to describe the complete hardware structure of aradio. In either case, the description of the hardware
structure should be consistent with hardware partitioning as described in the Hardware Architecture
Definition in section 4.0 of the SCA.

The devicepkg element isthe root element of the DPD. The devicepkgid attribute uniquely identifiesthe
package and isa DCE UUID, asdefined in section 4.1. The version attribute specifies the version of the
devicepkg. Theformat of the version string is numerical major and minor version numbers separated by
commas (e.g., "1,0,0,0"). The name attributeisauser-friendly label for the devicepkg

<<DTDElement>>
devicepkg

aid : ID

Lginame : CDATA

Lgversion : CDATA

<<DTDSequenceGroup>>
devicepkg_grp
(from devicepkg)

0.1 1.n 0.1
{4} L 3 & {3}
<<DTDElement>> <<DTDElementPCDATA>>| |<<DTDElement>>| |<<DTDElementPCDATA>>
hwdeviceregistration title author description
Lgid ;1D

Ld2name : CDATA
Lgversion : CDATA

Figure 7.2-1 devicepkg Element Relationships

A DPD should be provided as part of the documentation for a hardware device. The DPD should contain
all of the mandatory XML elements as well as some of the optional elements. In particular, the description
element of the DPD is optional but should be provided. The description element can be used to provide
text information about the device. The hwdeviceregistration element contains specific information about
the hardware.

Raytheon Page 73 of 78

SCA Developer's Guide Rev 1.1

<<DTDElement>>
hwdeviceregistration

[@id : ID

[a@name : CDATA
Lzversion : CDATA

<<DTDSequenceGroup>>
hwdeviceregistration_grp
(from hwdeviceregistration),

<<DTDElement>>
deviceclass
0.1
{2
{1} {3}
<<DTDElementPCDATA>> <<DTDElement>> <<DTDElementPCDATA>> <<DTDElementPCDATA>>
description propertyfile manufacturer modelnumber

\ {6}
0..n
<<DTDElement>>

childhwdevice

‘ditype : CDATA

Figure 7.2-2 hwdevicer egistration Element Relationships

The hwdeviceregistration element may have any number of childhwdevice elements. Each childhwdevice
element represents a component/subsystem of the device; thus, this structure provides away of

documenting the complete structure of the hardware device.

Raytheon

Page 74 of 78

SCA Developer's Guide Rev 1.1

7.3 DomainManager Configuration Descriptor

This section describes the XML elements of the DomainManager Configuration Descriptor (DMD) XML
file. The domainmanager configuration element is the root element of the DMD. The

domainmanager configuration element id attribute is a DCE UUID that uniquely identifies the
DomainManager. Theid isa DCE UUID value as specified in section 4.1.

<<DTDElement>>
domainmanagerconfiguration
Lghid : ID
Lfname : CDATA

<<DTDSequenceGroup>>
domainmanagerconfiguration_grp
(from domainmanagerconfiguration)

0..
{1 2 {3t

<<DTDElementPCDATA>> <<DTDElement>> <<DTDElement>>
description devicemanagersoftpkg services

Figure 7.3-1 domainmanager configuration Element Relationships

A DMD should be provided as part of the software documentation for a DomainManager implementation.
The DMD should contain all of the XML elements. The description element of the DMD is optional but
should be provided. The description element can be used to provide text information about the
DomainManager implementation and how the DMD is utilized by the implementation. The services
element specifies which service (e.g., Log) instances will be used.

Raytheon Page 75 of 78

SCA Developer's Guide Rev 1.1

8 Ul Discussion

8.1 Introduction

JTRS User Interface applications are used to setup, control, and monitor JTRS compliant Core Framework
and radio applications (waveforms).

The design of an operator console and the methods used to control aJTRS radio platformisradio platform
and program specific. For example, a handheld radio may only provide a small operator keypad and
display, while networked radio system could provide a desktop workstation as the operator console. With
S0 many variations of operator control of a JTRS radio, no one approach for a Ul design can be mandated.
Operator control messages do have to arrive at the waveform application in the form of callsto operations
realizing appropriate CORBA interface(s) - but this requirement can be met in various ways. The following
sections provide examples of Ul approaches for a JTRS compliant radio.

8.2 Direct CORBA Links

One approach to delivering CORBA messages to the waveform application isto build the Ul itself on a
CORBA platform. Thisisanatural structure when the operator's consoleis aworkstation running a
graphical user interface (GUI).

An example of aremotely located GUI utilizing Java and CORBA technologiesis shown in Figure 8.2-1.
The CF interfaces, defined in the SCA CF IDL, are used in the GUI for control and mo nitoring of the CF.
Waveform specific interface-APIs are used to control the Application waveform. CORBA callsin this
environment are remote calls across the network connection.

Inthe XY Z example (see section 6.2.2.5, for example) the GUI performs CORBA calls using the
appropriate APIs for the CF components and WF Resource components.

Java GUI Radio
Platform

Network
Connection

ORB Class Library

ORB POSIX API

* generated with idltojava compiler

Figure 8.2-1 Direct CORBA Link Block Diagram

Raytheon Page 76 of 78

SCA Developer's Guide Rev 1.1

8.3 Non-Direct CORBA Links

Another approach is to have "adapter” softwarein the radio that translates between a proprietary messaging
format and the appropriate SCA -defined CORBA APIs. This method would be especially appropriate if
the operator interface has limited capabilities, or in order to connect alegacy controller to a JTRS-
compliant radio application.

Figure 8.3-1 shows an example of a proprietary controller connected to adapter software in the radio.
A serial link provides the actual physical connection between the controller and the radio. The adapter
converts between the proprietary format and appropriate operations defined in the CF interface and the
waveform-specific interface. CORBA callsin this environment are local calls within the processor.

Radio
Platform

et " - : w
serid
connection
ORB I POSIX API

Figure 8.3-1 Non-direct CORBA Link Block Diagram

Ul

In the XY Z example, aproprietary formatted serial message is sent to the radio from the Ul. The adapter
processes the message and forwards the call to appropriate component (CF component or WF Resource)
using the proper CF or WF API.

Raytheon Page 77 of 78

SCA Developer's Guide Rev 1.1

9 Appendices

9.1 Appendix A—- XML Introduction

9.2 Appendix B — IDL for XYZ Waveform Physical layer

9.3 Appendix C— Header Files for XYZ Waveform Physical Layer

9.4 Appendix D— XML for a Sample Waveform

9.5 Appendix E— XML for a Sample Device

Raytheon Page 78 of 78

