
16 - 20 September 2002

Copyright © 2002, Raytheon Company.
All Rights Reserved

SCA Technical Overview
16 - 20 September 2002

Day 1 - 2

AGENDA

• Day 1 Technical Overview of the Software
Communications Architecture

• Day 2 Security and Waveform API Supplements
• Day 3 Developing SCA-Compliant Waveforms /

Applications and Device / DeviceManager
• Day 4 Developing Application XML Configuration

Files
• Day 5 SCA Porting, Testing and Evaluation

SCA Technical Overview
16 - 20 September 2002

Day 1 - 3

Points Of Contact

This SCA Training Class is being presented by
of Fort Wayne, Indiana on behalf of the JTRS
Joint Program Office.

Points of Contact:

Mr. JerryMr. JerryMr. JerryMr. Jerry BickleBickleBickleBickle Gerald_L_Gerald_L_Gerald_L_Gerald_L_BickleBickleBickleBickle @@@@ raytheonraytheonraytheonraytheon.com.com.com.com (260) 429(260) 429(260) 429(260) 429----6280628062806280 Sr. Principal SWSr. Principal SWSr. Principal SWSr. Principal SW EngrEngrEngrEngr....

Mr. Bruce BakerMr. Bruce BakerMr. Bruce BakerMr. Bruce Baker Bruce_A_Baker @Bruce_A_Baker @Bruce_A_Baker @Bruce_A_Baker @ raytheonraytheonraytheonraytheon.com.com.com.com (260) 429(260) 429(260) 429(260) 429----4467446744674467 Sr. Principal SWSr. Principal SWSr. Principal SWSr. Principal SW EngrEngrEngrEngr....

Mr. Jimmie MarksMr. Jimmie MarksMr. Jimmie MarksMr. Jimmie Marks Jimmie_T_Marks @Jimmie_T_Marks @Jimmie_T_Marks @Jimmie_T_Marks @ raytheonraytheonraytheonraytheon.com.com.com.com (260) 429(260) 429(260) 429(260) 429----6422642264226422 Sr. Principal SWSr. Principal SWSr. Principal SWSr. Principal SW EngrEngrEngrEngr....

Mr. RickMr. RickMr. RickMr. Rick GiardinaGiardinaGiardinaGiardina Rick_Rick_Rick_Rick_GiardinaGiardinaGiardinaGiardina @@@@ raytheonraytheonraytheonraytheon.com.com.com.com (260) 429(260) 429(260) 429(260) 429----7369736973697369 Adv. Comm. Program Manager Adv. Comm. Program Manager Adv. Comm. Program Manager Adv. Comm. Program Manager

Mr. Jim BrownMr. Jim BrownMr. Jim BrownMr. Jim Brown James_J_Brown @James_J_Brown @James_J_Brown @James_J_Brown @ raytheonraytheonraytheonraytheon.com.com.com.com (260) 429(260) 429(260) 429(260) 429----6120612061206120 JTRS Step 2 Program Manager JTRS Step 2 Program Manager JTRS Step 2 Program Manager JTRS Step 2 Program Manager

Day 1 - 4

SCA Training for
Developers and Testers

SCA Technical Overview
16 - 20 September 2002

Day 1 - 5

Day 1 AGENDA

• JTRS Background
– JTRS Objectives
– Digital Radio Evolution
– JTRS Program History

• What the SCA Attempts To Do
• What the SCA Consists Of

– SW Architecture Overview
– HW Architecture Overview
– Intro to API Supplement
– Intro to Security Supplement

• How the SCA Fits Into a Procurement / System Design

SCA Technical Overview
16 - 20 September 2002

Day 1 - 6

SCA Technical Overview
16 - 20 September 2002

Day 1 - 7

JTRS Program Mission

Acquire
a Family of
Affordable,
High-capacity
Tactical Radio Systems
to Provide
Interoperable
LOS/BLOS and Wireless,
Mobile Network
C4I Capabilities
to the Warfighters.

SCA Technical Overview
16 - 20 September 2002

Day 1 - 8

JTRS Objectives

• Meet Warfighter Requirements With Systems
– Built to a common open architecture
– That leverage & keep up with commercial technology
– That permit insertion of new capabilities through software or

module replacement
• Reduce the Logistics Tail

– Reduce the number of different types of radios
• 25 to 30 families to 1 family

– Maintain a competitive environment across all program phases
• initial acquisition, upgrade, support

– Re-use application programs (radio waveforms)

SCA Technical Overview
16 - 20 September 2002

Day 1 - 9

JTRS Target - a Software Radio

• Its Characteristics Can Be Altered Allowing it to Operate
with Any Legacy Waveform. Thus a Single Unit Can
Accommodate Multi-Service and Multi-National
Capabilities.

• It Can Be Upgraded or Reprogrammed using
standardized APIs. New or Improved Capabilities Can
Be Incorporated Easily.

• JTRS Therefore Provides a Previously Unavailable
Capability for Joint, Civilian-military, Multi-national and
Coalition Operations.

SCA Technical Overview
16 - 20 September 2002

Day 1 - 10

The JTRS Program

• JTRS the Architecture
– An open-standard rule book
– Focus of current efforts

• industry led activity to develop & validate

• JTRS the Product
– Hardware and software built to the architecture
– Cluster procurements

• JTRS the Capability
– Interoperable, reprogrammable, upgradeable, multi-channel,

multi-mode, flexible communications
• flexible data pipes

SCA Technical Overview
16 - 20 September 2002

Day 1 - 11

SCA Technical Overview
16 - 20 September 2002

Day 1 - 12

RF
Modem

Protocol
Capability

• Hardware Based
• Simplistic Protocols

Evolution to Digital Radios

• Radio Prior to Digital Processing
– Modem protocol capability low
– No reprogrammability

SCA Technical Overview
16 - 20 September 2002

Day 1 - 13

RF

Modem

Protocol
Capability

• Reprogrammable Digital Processing
• Complexity of Protocols Bounded by

Available Processing

Evolution to Digital Radios (cont'd)

• Radio After Advent of Digital Processing
– Modem protocol capability increasing
– Increased reprogrammability

SCA Technical Overview
16 - 20 September 2002

Day 1 - 14

RF

Modem

More Advanced
Protocol

Capability

Messaging/
Networking/

General
Purpose

Processing

Evolution to Digital Radios (cont'd)

• Radio With Increased Digital Processing
– Modem protocol complexity increasing
– Emergence of general purpose processors performing high

level functions
– Expanded digital signal processing hardware increased

reprogrammability
• protocols and messaging

SCA Technical Overview
16 - 20 September 2002

Day 1 - 15

RF

Modem

More Advanced
Capability

Messaging/
Networking/

General
Purpose

Processing

Digital Boundary is Expanding

Evolution to Digital Radios (cont'd)

• Growth of Processing Capability is Constantly
Increasing

• Analog/Digital Boundary is Moving Toward the Antenna

SCA Technical Overview
16 - 20 September 2002

Day 1 - 16

RF

Modem

More Advanced
Protocol

Capability

Messaging/
Networking/

General
Purpose

Processing

Evolution to Digital Radios (cont'd)

• Explosion in Reprogrammability of Devices Led to
Many Solutions to Waveform Implementation
– Many available devices
– Many interfaces invented
– Many service definition solutions

• operating systems
• message formats and techniques

– Many languages
• Low Latency Devices Support Multi-Processing

Implementation of Waveforms

SCA Technical Overview
16 - 20 September 2002

Day 1 - 17

Open Architecture Definitions Form
the Foundation for Reuse

Open Architecture Definitions Form
the Foundation for Reuse

Evolution to Digital Radios (cont'd)

• Reuse Comes to the Forefront as a Most Important
Requirement

• SCA Defines Waveform Implementation Standards
– Standardization of interfaces

• APIs
• Devices

– Standardization of service definitions
• Operating systems
• Message formats and techniques

– CORBA
• Core Framework
• Waveform Services
• Security Services

SCA Technical Overview
16 - 20 September 2002

Day 1 - 18

Radio Digitization

• Through the Advancement of Hardware and Software
Technologies, Radios have Evolved From Stovepipe
Implementations to Open Architecture, Multi-Function
Communication Systems

SCA Technical Overview
16 - 20 September 2002

Day 1 - 19

JTRS Step 1 & 2A

• Raytheon Formed and led the MSRC Consortium
– Step 1 - Architecture Definition (Based on previous Raytheon

programs)
– Step 2A - Architecture Development & Validation

• Raytheon’s Role
– Raytheon led the Consortium Executive Council, the

Management Council, the Architecture IPT, and the Software
IPT

– Initiated commercial acceptance of the SCA by promoting it at
the SDR Forum where it was adopted in September 1999

– Develop and prototype the Core Framework
– Developed the Validation Demonstration Model (VDM)

Prototype
• Hosted all 2A waveforms & Core Framework
• Delivered 2 VDMs to JPO, additional VDMs at Raytheon

SCA Technical Overview
16 - 20 September 2002

Day 1 - 20

Step 2A Prototypes

• 4 Hardware Prototypes
• Description:

– 2-4 Channels both Narrow and Wide Band, 2 MHz - 2 GHz
– Waveforms Implemented - VHF, UHF, HQ I/II,

DAMA/DASA, HF-ALE, SINCGARS ASIP/INC, WDW, VRC-99
• COTS Processors: Pentium, PowerPC
• Operating Systems: VxWorks, LynxOS
• Security: In-process
• Interoperability Demonstrations

– Prototypes to Legacy Systems
– Prototype to Prototype

• Porting
– VHF FM to three other prototypes
– HF ALE to one other prototype

SCA Technical Overview
16 - 20 September 2002

Day 1 - 21

JTRS ORD Coverage
Demonstrated in Raytheon VDM

• Basic Radio Functionality in an Open Systems Architecture
• Receive & Transmit over Frequency Range with Power Control.
• LOS Waveform Audio and/or Data Communications

- UHF AM
- Have Quick I&II
- VHF-FM
- VHF FM-Public Service
- VHF AM/ATC (8-1/3 kHz tuning)

• DASA MIL-STD-188-181 Data Communications
• DAMA MIL-STD-188-183 Data Communications
• Crossbanding Between VHF-FM and HQ
• Multi-Channel Operation (1 to 4 Channels)
• Unencrypted GPS
• Dynamic load and configure/reconfigure operation using Parsed

Domain and Device Manager XML Files for Component Connections

SCA Technical Overview
16 - 20 September 2002

Day 1 - 22

Other Step 2A Prototypes

• ITT
– PC-104 form factor (not integrated), VxWorks, X86
– Demonstrated Partial SINCGARS SIP and WDW
– Demonstrated IP Routing (Crossbanding)

• Rockwell
– 6u VME form factor, LynxOS, PPC
– Demonstrated HF-ALE and VHF-FM
– Black Side Radio with External Crypto

• BAE
– 6u VME form factor, VxWorks, PPC
– Demonstrated VHF-FM only, VRC-99

• Ported HF-ALE Waveform Software from Rockwell to
Raytheon Prototype with over 90% Code Reuse

SCA Technical Overview
16 - 20 September 2002

Day 1 - 23

Step 2A Validation Results

• Multiple vendors can implement hardware and software compliant
with the SCA

• SCA compliant software can operate in SCA compliant prototypes
independently developed by other vendors.

• The architecture supports the stresses induced by selected
waveform sets operating on multiple prototypes with diverse
resources.

• The SCA can incorporate new technology.
• The architecture supports over the air

programming/reprogramming.
• The architecture enables porting of waveforms between hardware

implementations.
• Crossbanding can be achieved between applicable waveforms

using SCA compliant applications.

SCA Technical Overview
16 - 20 September 2002

Day 1 - 24

JTRS Step 2A Extension

• Submitting SCA to commercial standards organization Object
Management Group (OMG)

• Updated, validated and delivered the CF to comply with SCA v2.0
• Developing Cryptographic Algorithms for Cornfield
• Generated “SCA 102” briefing for Government and Industry
• Performed EPLRS Study for mapping EPLRS waveform to SCA

architecture
• Performed Security Requirements Analysis study
• Coordinated the closure of 106 change proposals to the SCA
• Supported Q&A Forums, JTRS Industry Day and various conferences

to promote SCA to Government and industry
• Maintain and develop SCA

– Create/Maintain the CP database
– Facilitate the TAG / SCA change process
– Prepare and submit the SCA and SRD documents

SCA Technical Overview
16 - 20 September 2002

Day 1 - 25

Step 2B Activities

• Goal: 3rd Party Validation of SCA
– 7 Agreements Awarded

• Scalability & Form Factor SCA Impacts
– Man-pack
– Hand-held - Tactical/Commercial

• Complex Waveform SCA Impacts
– Link-16 S/W Implementation Risk Reduction
– Modeling and Analysis, and Prototyping

• Core Framework Implementations
– Government Open Source Core Framework
– Commercial Based Conversion

• Platform Integration Study
• 3rd Party Waveform Development

– License-Free SINCGARS ASIP Waveform from ATC with plans
to Port SIP/INC to Raytheon VDM

SCA Technical Overview
16 - 20 September 2002

Day 1 - 26

JTRS Successes

• DoD mandate of JTRS compliance for any new
procurements

• Software Communications Architecture v2.2 released in
support of Cluster procurements

• Gaining International Acceptance
– JPO Initiating cooperative radio programs with Japan, U.K. and

others
• Commercial Acceptance

– OMG Interest
• Raytheon, Mitre, and Mercury Computers co-chair the OMG Radio

DSIG
– SDR Forum adopted SCA 1.0 which Raytheon submitted in

Sept 1999

SCA Technical Overview
16 - 20 September 2002

Day 1 - 27

SCA Technical Overview
16 - 20 September 2002

Day 1 - 28

Criteria for the SCA

– Based on and To Be Accepted as Open, Commercial Standard
– Supports a Family of Radios

• Interoperable,
• Programmable (including Over-the-Air),
• Scaleable (handheld to fixed-station),
• Affordable

– Maximizes Independence of Software from Hardware
• Application and device portability & reuse
• Rapid technology insertion over time

– Extendible to New Waveforms and/or Hardware Components
– Incorporates Embedded, Programmable INFOSEC
– Supports Requirements in JTRS ORD

• Operator reconfigurable
• Multiple legacy and new waveforms (33)
• Simultaneous multichannel operation (up to 10)

SCA Technical Overview
16 - 20 September 2002

Day 1 - 29

How "low" does it go?

• There are many valid definitions of "architecture"
• The SCA is an Implementation-Independent Framework

for development of JTRS software radios
– Comprised of interface and behavioral specifications, general

rules, waveform APIs and security requirements necessary to
meet the criteria previously established

– SCA requirements limited to those necessary to meet the
criteria without restricting innovation or domain-specific
requirements

• The SCA is not an "implementation architecture"
– That will result from marriage of the SCA, the technical

specification, and other procurement requirements

SCA Technical Overview
16 - 20 September 2002

Day 1 - 30

The Resulting SCA

• Open, Distributed-Component Architecture Specification
• Separates Applications from the Operating Environment
• Segments Application Functionality
• Defines Common Interfaces for Managing & Deploying

SW Components
• Defines Common Services & APIs to Support Device

and Application Portability

SCA Technical Overview
16 - 20 September 2002

Day 1 - 31

SCA Technical Overview
16 - 20 September 2002

Day 1 - 32

What the SCA Consists Of

• SW Architecture
• HW Architecture
• API Supplement
• Security Supplement

SCA Technical Overview
16 - 20 September 2002

Day 1 - 33

SCA Technical Overview
16 - 20 September 2002

Day 1 - 34

• SCA Operating Environment (OE)
• Core Framework (CF) CORBA Interfaces
• Log Interface
• Event Service
• Naming Service
• Domain Profile

Software Architecture

SCA Technical Overview
16 - 20 September 2002

Day 1 - 35

SCA Operational Environment

• The JTRS Operating Environment (OE) defined in the
SCA consists of three major parts:

– A Real Time Operating System (RTOS)
– A Real Time Object Request Broker (ORB)
– The SCA Core Framework (CF)

SCA Technical Overview
16 - 20 September 2002

Day 1 - 36

SCA Operating Environment
Overview

Logical Device is an Adapter for
the HW-specific devices

non-CORBA components
 or

device drivers

Core Framework:
Framework Control &

Framework Services Interfaces

applications' Resources,
CF Base Application
Interfaces

CORBA ORB

applications use CF for
all File accessCORBA API

OS access
limited to
SCA AEP

OS access
unlimited

OS access
unlimited

OS (function) that supports SCA

(unlimited proprietary APIs for system
development).

Any vendor-provided OS
function calls

(non-CORBA
components provide
access to hardware
devices / functionality
not available on a
CORBA-capable
processor)

SCA Technical Overview
16 - 20 September 2002

Day 1 - 37

Real Time Operating System

• RTOS Must Support SCA Application Environment
Profile (AEP)
– The SCA AEP is a subset of the POSIX.13 Real-time

Controller System Profile (PSE52)
– Can be fully POSIX Profile 52 (or greater) compliant

• Applications shall be limited to using the RTOS
services that are designated as mandatory in the
SCA AEP

SCA Technical Overview
16 - 20 September 2002

Day 1 - 38

SCA CORBA Usage

• No extensions and/or services above and beyond
Minimum CORBA can be used except as specified in
the SCA.

• Extensions currently allowed:
– Naming Service

• SCA- defined Lightweight Naming Service
– Event Service

• OMG Event Service (Push Model) with SCA-defined event types

SCA Technical Overview
16 - 20 September 2002

Day 1 - 39

SCA Domain Profile

• A Domain Profile is a set of XML files that describe the
hardware devices and software components of a
system, their properties, and their interconnections

• Based on OMG CORBA Components Specification
– eXtensible Markup Language (XML) format
– Based upon the OMG's draft CORBA Components

specification (orbos/99-07-01)
– Customized from the OMG CORBA Component Specification

• To better address Software Radio Needs.
• Changes to be presented to OMG

– Describes specific characteristics of software components or
hardware devices

– Describes interfaces, functional capabilities, logical location,
inter-dependencies, and other pertinent parameters.
• Description of applications, startup requirements of devices, etc.

SCA Technical Overview
16 - 20 September 2002

Day 1 - 40

SCA Problem Domain

command & control
and/or data messaging
ports, or Load
Dependencies

Port Property Port

Event

0..n0..n 0..n0..n

1..n1..n

has dependencies to other
0..n

0..n

consumers

0..n 0..n

producers

uses 0..n

executes on and
consumes capacities

0..n

may issue

0..n

0..n

0..n

0..n

0..n

0..nmay issue

Capacity
1..n

Physical Element

Physical Element

SW Application

Physical Element

SW Application

SW Component SW Component

SCA Technical Overview
16 - 20 September 2002

Day 1 - 41

SCA Software Structure

Core Framework (CF)

Commercial Off-the-Shelf
(COTS)

Applications
OPERATING
ENVIRONMENT (OE)

Red Hardware Bus

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Interface Services

Board Support Package (Bus Layer)

Black Hardware Bus

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Interface Services

Board Support Package (Bus Layer)

Operating System

Core Framework IDL

Non-CORBA
Modem

Components

Non-CORBA
Security

Components

Non-CORBA
I/O

Components

RF

Modem
Components

Link, Network
Components

Security
Components

Modem
Adapter

Security
Adapter

Security
Adapter

I/O
Adapter

I/O
Components

MAC API LLC/Network API LLC/Network API

Link, Network
Components

Security API

Operating System

Physical
API

I/O API

(“Logical Software Bus” via CORBA)

SCA Technical Overview
16 - 20 September 2002

Day 1 - 42

Example Message Reception
Flow With & Without Adapters

CORBA
SecurityDevice

Host
Adapter

RF

Non-CORBA
Host

CORBA
HostResource

Waveform
NetworkResource

Waveform
LinkResource

Non-CORBA
Modem

CORBA
ModemDevice

S

S

S

SM

M

(2) (3) (4) (5)

(1)

(1)

(2)

(3) (4)

(5) (6)

(7) (8)

(9)

Message Reception Path (with Adapters)
(1) RF Interface to Modem
(2) non-CORBA Modem Interface
(3) CORBA Interface to Waveform Link
(4) CORBA Interface to Security Adapter
(5) Black-side non-CORBA Security Interface
(6) Red-side non-CORBA Security Interface
(7) CORBA Interface to Waveform Network
(8) CORBA Interface to Host Adapter
(9) non-CORBA Host Interface

Message Reception Path (without Adapters)
(1) RF Interface to Modem
(2) CORBA Interface to Waveform Link
(3) CORBA Interface to Security
(4) CORBA Interface to Waveform Network
(5) CORBA Interface to Host

M

S

S Note: The design goal of a CORBA gateway “Adapter” is to
define the CORBA side of the gateway such that the eventual
replacement of the non-CORBA device and its Adapter does
not change the Core Framework CORBA interface.

Modem
Adapter

Security
Adapter

Security
Adapter

H

H

H

M
S

S
H

Non-CORBA
SecurityDevice

SCA Technical Overview
16 - 20 September 2002

Day 1 - 43

SCA Technical Overview
16 - 20 September 2002

Day 1 - 44

• The Core Framework (CF) is the essential, “core” set of open software
Interfaces and Profiles that provide for the deployment, management,
interconnection, and intercommunication of software application components
in embedded communication systems.

• CF Interfaces (defined in IDL) consist of:
- Base Application Interfaces (Port, LifeCycle, TestableObject, PropertySet, PortSupplier,

ResourceFactory, and Resource) that provide a common set of interfaces for exchanging
information between software application components.

- Framework Control that provide interfaces for the control and management of hardware
assets and applications, and domain (system).

- Device Interfaces (Device, LoadableDevice, ExecutableDevice, AggregateDevice)
- Device Management Interfaces (DeviceManager).
- Domain Management Interfaces (Application, ApplicationFactory, DomainManager)

- File Service Interfaces (File, FileSystem, FileManager) that provide interfaces for distributed
file access services.

• A Domain Profile (defined in XML DTD) consists of a set of files that
describe the individual components of a software application, their
interconnection, and their properties. The properties of embedded hardware
devices are also described in the Domain Profile.

SCA Core Framework
Definition

SCA Technical Overview
16 - 20 September 2002

Day 1 - 45

Core Framework IDL
Relationships

<<Interface>>
Device <<Interface>>

Application

<<Interface>>
DomainManager

inherits
from

uses

<<Interface>>
ApplicationFactory

<<Interface>>
DeviceManager

<<Interface>>
FileManager

deviceManagers

1..*

0..*
applicationFactories

file
Mgr1

applications

0..*

uses

<<Interface>>
File

fileSys

0..1

<<Interface>>
Resource

<<Interface>>
ResourceFactory

Core Framework Interface

Implemented by
Non-Core Applications

Core Framework Interface

Implemented as
Core Application Services

Legend

<<Interface>>
FileSystem

<<Interface>>
LoadableDevice

<<Interface>>
ExecuteableDevice

<<Interface>>
AggregateDevice 0..*

devices

<<Interface>>
PropertySet

<<Interface>>
PropertySet<<Interface>>

LifeCycle
<<Interface>>

TestableObject
<<Interface>>

PortSupplier
<<Interface>>

Port

SCA Technical Overview
16 - 20 September 2002

Day 1 - 46

SCA Technical Overview
16 - 20 September 2002

Day 1 - 47

Resource Interfaces

Resource

start()
stop()

<<Interface>>

LifeCycle

initialize()
releaseObject()

<<Interface>>

TestableObject

runTest()

<<Interface>>
PropertySet

configure()
query()

<<Interface>>
PortSupplier

getPort()

<<Interface>>

StringSequence
<<CORBATypedef>> UnknownProperties

invalidProperties : Properties

<<CORBAException>>

Properties
<<CORBATypedef>> DataType

id : string
value : any

<<CORBAStruct>>

identifier : string

SCA Technical Overview
16 - 20 September 2002

Day 1 - 48

Resource Interfaces

• Inherits from the following other base application
interfaces:
– Lifecyle - used to initialize or release the Resource
– TestableObject - used to test Resource (i.e. BIT)
– PropertySet - provides operations to configure and query

Resource properties.
– PortSupplier - provides an operation to get a port object

reference.
• Resource provides additional behavior to:

– Start / stop processing

SCA Technical Overview
16 - 20 September 2002

Day 1 - 49

Port Interface

Port

connectPort(connection : in Object, connectionID : in string) : void
disconnectPort(connectionID : in string) : void

<<Interface>>

SCA Technical Overview
16 - 20 September 2002

Day 1 - 50

Port Interface

• Used to Connect Resource Components
– Via the connectPort / disconnectPort operations

• Resource Components have a set of
– Uses port(s)

• A port that uses some set of services provided by a provider
component

• All uses ports implement the Port interface
– Provides port(s)

• A port that provides some set of services at an interface
• When that interface is one defined in the API Supplement, the

component implements the behavior defined by the appropriate API
– Port Types

• Command and Control, Data, Status
• Basic push types defined in the SCA

SCA Technical Overview
16 - 20 September 2002

Day 1 - 51

ResourceFactory Interface

ResourceFactory

createResource(resourceId : in string, qualifiers : in Properties) : Resource

releaseResource(resourceId : in string) : void

shutdown() : void

<<Interface>>

ErrorNumberType

<<CORBAEnum>>

Properties
<<CORBATypedef>>

uses

Resource

<<Interface>>

identifier : string

SCA Technical Overview
16 - 20 September 2002

Day 1 - 52

ResourceFactory Interface

• Used to create/tear down Resource(s)
– Behavior can be homogeneous or heterogeneous (Resources

created do not have to be same type) depending on qualifiers in
create call

• Modeled after the Factory Design Pattern.
• Provides industry standard mechanism of obtaining a

Resource without knowing its identity.
• Optional Interface

SCA Technical Overview
16 - 20 September 2002

Day 1 - 53

SCA Technical Overview
16 - 20 September 2002

Day 1 - 54

Device Interfaces

Device
<<Interface>>

AggregateDevice
<<Interface>>

ExecutableDevice
<<Interface>>

LoadableDevice
<<Interface>>

Resource
<<Interface>>

SCA Technical Overview
16 - 20 September 2002

Day 1 - 55

Device Interface

AggregateDevice
<<Interface>>

Device
usageState : UsageType
adminState : AdminType
operationalState : OperationalType
identifier : string
softwareProfile : string
label : string
compositeDevice : AggregateDevice

allocateCapacity(capacities : in Properties) : boolean
deallocateCapacity(capacities : in Properties) : void

<<Interface>>

uses

Resource
<<Interface>>

Properties
<<CORBATypedef>>

SCA Technical Overview
16 - 20 September 2002

Day 1 - 56

Device Interface

• Defines a “logical Device” in the system
– An abstraction of a H/W device
– Typically one logical Device per H/W device

• Can be aggregation of multiple child Devices
• For example: A physical modem device represented by a logical modem Device with TDMA modem

Device, CDMA modem Device, FM modem Device, etc. child Devices

• Provides state management interfaces based on X.731

• Defines the capacity model for the device

SCA Technical Overview
16 - 20 September 2002

Day 1 - 57

LoadableDevice Interface

LoadableDevice

load(fs : in FileSystem, fileName : in string, loadKind : in LoadType) : void
unload(fileName : in string) : void

<<Interface>>

FileSystem
<<Interface>>

InvalidFileName
<<CORBAException>>

Device
usageState : UsageType
adminState : AdminType
operationalState : OperationalType
identifier : string
softwareProfile : string
label : string
compositeDevice : AggregateDevice

allocateCapacity()
deallocateCapacity()

<<Interface>>

SCA Technical Overview
16 - 20 September 2002

Day 1 - 58

LoadableDevice Interface

• This interface extends the Device interface by adding
software loading and unloading behavior to a Device.

• Types of load that can be performed are
– Kernel Module
– Driver - Device Driver
– Shared - Dynamic Linking
– Executable - Main POSIX process

• Example Loadable Devices: Modem, FPGA, etc.

SCA Technical Overview
16 - 20 September 2002

Day 1 - 59

ExecutableDevice Interface

LoadableDevice

load()
unload()

<<Interface>>

ExecutableDevice
execute(name : in string, options : in Properties, parameters : in Properties) : ProcessID_Type
terminate(processId : in ProcessID_Type) : void

<<Interface>>

InvalidFileName
msg : string

<<CORBAException>Properties
<<CORBATypedef>>

SCA Technical Overview
16 - 20 September 2002

Day 1 - 60

ExecutableDevice Interface

• This interface extends the LoadableDevice interface by adding
execute and terminate behavior to a Device.

• Execute's name parameter, may be the name of a function
(thread) or a file (process) depending on the device implementation
(OS capability).

• Execute's options parameter, has two options:
STACK_SIZE_ID and PRIORITY_ID

• Execute's parameters parameter are user defined parameters
passed to the executable image as “argv” parameters

• Example Executable Devices: General Purpose Processor (Intel,
PowerPC), Modem that can be commanded to execute code

SCA Technical Overview
16 - 20 September 2002

Day 1 - 61

AggregateDevice Interface

InvalidObjectReference
<<CORBAException>>

AggregateDevice
devices : DeviceSequence

addDevice(associatedDevice : in Device) : void
removeDevice(associatedDevice : in Device) : void

<<Interface>>

Device
<<Interface>>

DeviceSequence
<<CORBATypedef>>

SCA Technical Overview
16 - 20 September 2002

Day 1 - 62

AggregateDevice Interface

• An aggregated logical Device adds itself to a composite
Device.

• An aggregate Device uses this interface to add or
remove itself from the composite Device when it is
being created or torn-down.

• The devices attribute contains a list of Devices that
have been added to this Device through the addDevice(
) operation and have not yet been removed through the
removeDevice() operation.

• Example Devices: INFOSEC Device with “n” crypto
channel Devices or I/O Device with “n” ports

SCA Technical Overview
16 - 20 September 2002

Day 1 - 63

SCA Technical Overview
16 - 20 September 2002

Day 1 - 64

DeviceManager Interface

DeviceSequence
<<CORBATypedef>>

uses

FileSystem
<<Interface>>

DeviceManager
deviceConfigurationProfile : string
fileSys : FileSystem
identifier : string
label : string
registeredDevices : DeviceSequence
registeredServices : ServiceSequence

registerDevice(registeringDevice : in Device) : void
unregisterDevice(registeredDevice : in Device) : void
shutdown() : void
registerService(registeringService : in Object, name : in string) : void
unregisterService(registeredService : in Object, name : in string) : void
getComponentImplementationId(componentInstantiationId : in string) : string

<<Interface>>

Device
<<Interface>>

InvalidObjectReference
msg : string

<<CORBAException>>

PropertySet

configure()
query()

<<Interface>>

PortSupplier

getPort()

<<Interface>>

SCA Technical Overview
16 - 20 September 2002

Day 1 - 65

DeviceManager Interface

• The DeviceManager interface is used to manage a set of logical
Devices and services on a node.

• Typically represents a CORBA capable “board” in a system
• Creates FileSystem object
• UnRegisters/Registers itself and its Devices and services with the

DomainManager
• Uses its Device Configuration Descriptor (DCD) profile for

determining
– How to obtain object reference of DomainManager

– Naming Service
– Device and Services components to be deployed
– File System names, etc.

SCA Technical Overview
16 - 20 September 2002

Day 1 - 66

SCA Technical Overview
16 - 20 September 2002

Day 1 - 67

DomainManager Interface

DomainManager
identifier : string
deviceManagers : DeviceManagerSequence
applications : ApplicationSequence
applicationFactories : ApplicationFactorySequence
fileMgr : FileManager
domainManagerProfile : string

registerDevice(registeringDevice : in Device, registeredDeviceMgr : in DeviceManager) : void
registerDeviceManager(deviceMgr : in DeviceManager) : void
unregisterDeviceManager(deviceMgr : in DeviceManager) : void
unregisterDevice(unregisteringDevice : in Device) : void
installApplication(profileFileName : in string) : void
uninstallApplication(applicationId : in string) : void
registerService(registeringService : in Object, registeredDeviceMgr : in DeviceManager, name : in string) : void
unregisterService(unregisteringService : in Object, name : in string) : void
registerWithEventChannel(registeringObject : in Object, registeringId : in string, eventChannelName : in string) : void
unregisterFromEventChannel(unregisteringId : in string, eventChannelName : in string) : void

<<Interface>>

PropertySet

configure()
query()

<<Interface>>

SCA Technical Overview
16 - 20 September 2002

Day 1 - 68

DomainManager Interface

• DomainManager provides interfaces for:
– Registration (register / unregister) of:

• DeviceManager(s), Device(s), Application(s), and Services

– Access to:
• Registered DeviceManager(s)

– Registered Devices and Services

• Installed and Executing Applications

• The Radio’s File System

– HCI to:
• Configure the domain
• Get the domain’s capabilities (Devices and Applications)
• Initiate maintenance functions

SCA Technical Overview
16 - 20 September 2002

Day 1 - 69

ApplicationFactory
Interface

ApplicationFactory
name : string
softwareProfile : string

create(name : in string, initConfiguration : in Properties,
deviceAssignments : in DeviceAssignmentSequence) : Application

<<Interface>>

ErrorNumberType
<<CORBAEnum>>

Application
profile : string
name : string
componentNamingContexts : ComponentElementSequence
componentProcessIds : ComponentProcessIdSequence
componentDevices : DeviceAssignmentSequence
componentImplementations : ComponentElementSequence

<<Interface>>

uses

DeviceAssignmentSequence
<<CORBATypedef>>

SCA Technical Overview
16 - 20 September 2002

Day 1 - 70

ApplicationFactory Interface

• Part of Domain Management
– Implemented by CF supplier, not waveform developers

• ApplicationFactory
– Used to create Application (waveform) instances
– Based on Domain Profile:

• Allocates software (Resources) to hardware (Devices)
– Allocates capacities against Devices

• Connects Resources that make up an Application
• Performs initial configuration

SCA Technical Overview
16 - 20 September 2002

Day 1 - 71

Application Interface

Resource
<<Interface>>

Application
profile : string
name : string
componentNamingContexts : ComponentElementSequence
componentProcessIds : ComponentProcessIdSequence
componentDevices : DeviceAssignmentSequence
componentImplementations : ComponentElementSequence

<<Interface>>

inherits from

DeviceAssignmentSequence
<<CORBATypedef>>

uses

SCA Technical Overview
16 - 20 September 2002

Day 1 - 72

Application Interface

• Part of Domain Management
– Implemented by CF supplier, not waveform developers

• Application
– Container for Resources that make up an application
– Provides the interface for instantiated applications:

• Control, configuration, status, tear-down
• Returns capacities to Devices on tear-down

SCA Technical Overview
16 - 20 September 2002

Day 1 - 73

Application Instantiation

• User Interface (UI) asks for all ApplicationFactory(s)
– Application Factory is chosen
– UI issues create() on ApplicationFactory

• ApplicationFactory determines applicable Device(s) on
which to load application code defined in Domain Profile
– AllocateCapacity/load/execute are called on Device(s)

• brings Resource(s) into existence

• Resource(s) bring Port(s) into existence
• ApplicationFactory connects the Port(s)
• Resources are then configured, initialized, and started
• CF Application is returned – providing Proxy interface to

Assembly Controller of created Resources.

SCA Technical Overview
16 - 20 September 2002

Day 1 - 74

Application
Instantiation/Deployment

DeviceDeviceCF Device

~~~~~
~~
~~~
XML
Files
~~~~
~~

Resource
2

Resource
1

Resource
3

CF ApplicationFactory

load/execute,
allocate capacities

Domain Profile

Physical Device 1

Physical Device 2

Connects
Resource Ports Bring Resources

into existence on
physical devices

1

23



SCA Technical Overview
16 - 20 September 2002

Day 1 - 75

Application Instantiation 
Example

 : ApplicationFactory
Comm user

 : 
Resource

CORBANaming
Services

Domain 
Profile

 : ResourceFactory

 : Log

Producer : 
Port

 : Device

 : 
LoadableDevice

 : ExecutableDevice

8: createResource(in 
ResourceNumType, in 

Properties)

7: _narrow()

13: configure(in Properties)

10: initialize( )
9: _narrow()

11: getPort(in string)6: Obtain component 
reference per SAD 

(Resource or 
ResourceFactory)

2: Evaluate & Obtain 
Application Profile Instance

14: writeRecords(in ProducerLogRecordSequence)

12: Connect the ports that 
interconnect the Resources

3: allocateCapacity
(in Properties)

4: load(in 
FileSystem, in 

string, in 
LoadType) 5: execute(in 

string, in 
Properties, in 

Properties)

1: create(in string, in Properties, in DeviceAssignmentSequence)
Outgoing Domain Management 

event channel15: send DomainManagementObjectAddedEventType



SCA Technical Overview
16 - 20 September 2002

Day 1 - 76

Application Tear-Down 
Example

 : Application

 : Log

 : Comm User

 : ResourceFactory

 : Port

 : 
Resource

 : Device

CORBA Naming 
Service

 : 
LoadableDevice

 : ExecutableDevice

10: writeRecords(in 
ProducerLogRecordSequence)

3: releaseResource
(in ResourceNumType)

4: shutdown( )

2: disconnectPort(in string)

5: releaseObject( )
8: deallocateCapacity(in Properties)

9: unbind naming context

6: unload(in string) 7: terminate(in 
ProcessID_Type

1: releaseObject( )
Outgoing Domain

 Management event channel

11: send DomainManagementObjectRemovedEventType



SCA Technical Overview
16 - 20 September 2002

Day 1 - 77



SCA Technical Overview
16 - 20 September 2002

Day 1 - 78

File, FileSystem & 
FileManager Interfaces

• FileManager, FileSystem, and File provide
– Access to Files, FileSystems 
– Clients use these interfaces for all file access.

• FileManager
– Manages multiple distributed FileSystems
– Looks like a FileSystem to the client

• FileSystem
– Enable remote access to physical file systems
– Allows creation, deletion, copying, etc. of files

• File
– Provides access to files within the radio
– Allows access across processor boundaries (distributed 

FileSystems)



SCA Technical Overview
16 - 20 September 2002

Day 1 - 79

File Interface

OctetSequence
<<CORBATypedef>>

File
fileName : string
filePointer : unsigned long
read(data : out OctetSequence, length : in unsigned long) : void
write(data : in OctetSequence) : void
sizeOf() : unsigned long
close() : void
setFilePointer(filePointer : in unsigned long) : void

<<Interface>>

FileException
<<CORBAException>>

uses



SCA Technical Overview
16 - 20 September 2002

Day 1 - 80

FileSystem Interface

FileSystem

remove(fileName : in string) : void
copy(sourceFileName : in string, destinationFileName : in string) : void
exists(fileName : in string) : boolean
list(pattern : in string) : StringSequence
create(fileName : in string) : File
open(fileName : in string, read_Only : in boolean) : File
mkdir(directoryName : in string) : void
rmdir(directoryName : in string) : void
query(fileSystemProperties : inout Properties) : void

<<Interface>>

InvalidFileName
<<CORBAException>>

FileException
<<CORBAException>>

Properties
<<CORBATypedef>>

StringSequence
<<CORBATypedef>>

usesuses



SCA Technical Overview
16 - 20 September 2002

Day 1 - 81

FileManager Interface

FileManager

mount(mountPoint : in string, file_System : in FileSystem) : void
unmount(mountPoint : in string) : void
getMounts() : MountSequence

<<Interface>>

InvalidFileName
<<CORBAException>>

inherits from uses

FileSystem

remove(fileName : in string) : void
copy(sourceFileName : in string, destinationFileName : in string) : void
exists(fileName : in string) : boolean
list(pattern : in string) : StringSequence
create(fileName : in string) : File
open(fileName : in string, read_Only : in boolean) : File
mkdir(directoryName : in string) : void
rmdir(directoryName : in string) : void
query(fileSystemProperties : inout Properties) : void

<<Interface>>



SCA Technical Overview
16 - 20 September 2002

Day 1 - 82



SCA Technical Overview
16 - 20 September 2002

Day 1 - 83

Core Framework
IDL Module Relationships

PortTypes
<<CORBAModule>>

CF
<<CORBAModule>>

Contains all required CF
interfaces and types.

Contains sequences of 
CORBA basic types for 
optional Port operations.

<<CORBAModule>>

LogService

Contains the interfaces 
and types for a log service.

<<CORBAModule>>

CosEventComm

Contains the interfaces 
and types for an event service 
with SCA-defined event types

<<CORBAModule>>

CosNaming

Contains the interfaces 
and types for a 
lightweight naming service.

StandardEvent
<<CORBAModule>>

Contains Standard event 
types for
Domain Management .



SCA Technical Overview
16 - 20 September 2002

Day 1 - 84

CF Module Interfaces

CF

LifeCycle PropertySet

Testable
Object

Port
File

FileManager
FileSystem

Application

Resource
ResourceFactory

Application
Factory

Device

DeviceManager

DomainManager

Loadable
Device

Executable
Device

Aggregate
Device

PortSupplier



SCA Technical Overview
16 - 20 September 2002

Day 1 - 85



SCA Technical Overview
16 - 20 September 2002

Day 1 - 86

LogService Module

LogService

Log



SCA Technical Overview
16 - 20 September 2002

Day 1 - 87

Log Interface

uses

Log

getMaxSize() : unsigned long long
setMaxSize(size : in unsigned long long) : void
getCurrentSize() : unsigned long long
getNumRecords() : unsigned long long
getLogFullAction() : LogFullActionType
setLogFullAction(action : in LogFullActionType) : void
getAvailabilityStatus() : AvailabilityStatusType
getAdministrativeState() : AdministrativeStateType
setAdministrativeState(state : in AdministrativeStateType) : void
getOperationalState() : OperationalStateType
writeRecords(records : in ProducerLogRecordSequence) : void
getRecordIdFromTime(fromTime : in LogTimeType) : RecordIdType
retrieveById(currentId : inout RecordIdType, howMany : in unsigned long) : LogRecordSequence
clearLog() : void
destroy() : void

<<Interface>>

ProducerLogRecordType
producerId :  string
producerName :  string
level : LogLevelType
logData :  string

<<CORBAStruct>>



SCA Technical Overview
16 - 20 September 2002

Day 1 - 88

Log Interface

• Capabilities
– Can write a set of producer log records at a time
– Can control the size of the Log
– The Log time stamps each log record received
– Can clear a Log
– Can control Log full condition (halt, wrap)
– Can retrieve a set of log records at one time.
– The Log has states (operational and administrative)



SCA Technical Overview
16 - 20 September 2002

Day 1 - 89



SCA Technical Overview
16 - 20 September 2002

Day 1 - 90

Event Service Module

Push
Consumer

CosEventComm

Push
Supplier



SCA Technical Overview
16 - 20 September 2002

Day 1 - 91

Event Service Concepts

• Based upon OMG Push Model

pushConsumer

pushConsumer

pushConsumer

pushConsumer

pushConsumer

pushProducer

pushProducer

pushProducer

pushProducer

pushProducer

Producer

Producer

Consumer

Consumer

Consumer

Event Service



SCA Technical Overview
16 - 20 September 2002

Day 1 - 92

Event Service

• Event Service decouples the communication between 
consumer and producer objects, where consumer 
components are unaware of producer components, and 
vice versa. 

• Consumer components process event data that are 
produced by producer components. 

• Based upon the Push Model approach where producers 
push events to consumer, as described in OMG 
Document formal/01-03-01: Event Service, v1.1. 

• Includes capability to create event channels. 
– An event channel is both a consumer and a producer of events. 
– An event channel permits multiple suppliers to communicate 

with multiple consumers asynchronously. 



SCA Technical Overview
16 - 20 September 2002

Day 1 - 93



SCA Technical Overview
16 - 20 September 2002

Day 1 - 94

Standard Event Module

StandardEvent



SCA Technical Overview
16 - 20 September 2002

Day 1 - 95

Standard Events

• Event Channels
– Standard Event Channels

• Incoming Domain Management (IDM) Channel 
– Defined as the standard event channel for incoming events to 

be processed by the Domain Management function.
– Used by Components within Domain to generate events that are 

consumed by Domain Management functions.
• Outgoing Domain Management (ODM) Channel 

– Defined as standard event channel for Domain Management 
outgoing events.

– Used by clients to receive events generated from Domain 
Management functions.

– User-Defined Channels
• WF can specify creation and usage of event channels



SCA Technical Overview
16 - 20 September 2002

Day 1 - 96

Standard Event Types

• IDM Channel
– StateChangeEventType - Structure that indicates that the state 

of the event source has changed.
• StateChangeCategoryType - Category of the state change that 

occurred.
• StateChangeType - Enumeration that identifies the specific states 

of the event source before and after the state change.
• ODM Channel

– DomainManagementObjectAddedEventType - Structure that 
indicates that the event source has been added to the domain.
• DomainManagementObjectRemovedEventType - Structure that 

indicates that the event source has been removed from the domain.
• SourceCategoryType- Enumeration that identifies the type of 

Object that has been added/removed from the domain.



SCA Technical Overview
16 - 20 September 2002

Day 1 - 97

Standard Event Interface

Radio HCI 
Event

Outgoing Event 
Channel

Domain 
Manager

Incoming 
EventChannel

Device

install()

pushEvent()

pushEvent()

pushEvent()

pushEvent()

deviceFail()

Application Installation with 
notification of New 
ApplicationFactory object

Device Failure, Operational
State Change Notification 



SCA Technical Overview
16 - 20 September 2002

Day 1 - 98



SCA Technical Overview
16 - 20 September 2002

Day 1 - 99

Naming Service Module

CosNaming

Naming
Context



SCA Technical Overview
16 - 20 September 2002

Day 1 - 100

• Naming Service
– Works like a white pages directory.  
– Objects register with the Naming Service giving the name and 

their object reference (or handle).  
– Client may specify name to Naming Service in order to obtain a 

object reference of the registered object.
– Interoperable Naming Service desired - specified by the OMG 

Document formal/00-11/01:Interoperable Naming Service 
Specification.
• SCA defines minimum Naming Service functionality

SCA Naming Service



SCA Technical Overview
16 - 20 September 2002

Day 1 - 101



SCA Technical Overview
16 - 20 September 2002

Day 1 - 102

Domain Profile Purpose

• JTRS Requirements
– Portability 

• Across Platforms and Platform Classes
– Interoperability

• Domain Profile
– Used to deploy Applications, logical Devices, and Services into 

a SCA compliant system
– Based on the CORBA Components Model
– Extended for purposes of supporting SCA Requirements for 

Device Management.



SCA Technical Overview
16 - 20 September 2002

Day 1 - 103

Domain Profile Files

• Made up of 8 file types
– Software Package Descriptor (SPD)

• Describes a component (CORBA and non-CORBA) 
implementations 

– Property File (PRF)
• Describes properties for a component.

– Software Component Descriptor (SCD)
• Describes a CORBA component characteristics

– Software Assembly Descriptor (SAD)
• Describes an application’s deployment characteristics

– Device Configuration Descriptor (DCD)
• Describes configuration characteristics for a DeviceManager.



SCA Technical Overview
16 - 20 September 2002

Day 1 - 104

Domain Profile Files, (cont'd)

• Made up of 8 file types, cont’d 
– DomainManager Configuration Descriptor (DMD)

• Describes configuration characteristics for a DomainManager.
– Device Package Descriptor (DPD)

• Identifies a class of hardware device and its characteristics
– Profile Descriptor

• Describes a type of file (SAD, SPD, DCD, DMD) along with the file 
name.

• Domain Profile files are based upon eXtensible Markup 
Language (XML) Document Type Definitions (DTDs)
– A DTD defines the meaning and compliant syntax for a XML file
– Each XML File contains

• XML declaration “?xml” - Specifies the XML version and whether 
the document is standalone.

• Document Type “!DOCTYPE” - specifies the DTD for the XML



SCA Technical Overview
16 - 20 September 2002

Day 1 - 105

Domain Profile XML DTD 
Relationships

Profile Descriptor
<<DTDElement>>

Software Component Descriptor
<<DTDElement>>

Software Assembly Descriptor
<<DTDElement>>

11
SoftwareProfile

Properties Descriptor
<<DTDElement>>

0..n0..n
Device Package Descriptor

<<DTDElement>>
0..n0..n

Device Configuration Descriptor
<<DTDElement>>

0..n0..n

Domain Profile

0..n0..n0..n0..n

Software Package Descriptor
<<DTDElement>>

11
SoftwareProfile

0..n0..n

0..10..1

1..n1..n
1..n1..n

DomainManager 
Configuration Descriptor

11

11
Profile Descriptor
<<DTDElement>>

11
11

Software Profile



SCA Technical Overview
16 - 20 September 2002

Day 1 - 106

SCA Components to XML 
Relationships

Core Framework objects
responsible for installing, 
starting up and tearing down 
applications

ApplicationFactory

Non-CORBA 
Component SW Component 

Descriptor

CORBA 
Component

11 11

described by

ResourceFactory

SW Assembly 
Descriptor

SW Package 
Descriptor

SW Component
11 11

described byProperties

11..n 11..n
Properties 
Descriptor 11 11

described by

Consumer

Resource

Uses Port
0..n0..n

1..n1 1..n1

used to access a Provides 
Port of a Producer ProducerProvides Port

0..n0..n
connection

11..n 11..n
provided by

described by a "connectinterface" 
element within the SAD

Types

Types

DeviceDevice Package 
Descriptor 11 11

described by

Part of XML-based 
"Domain Profile"

Part of XML-based 
"Domain Profile"

An application is 
an "assembly" of 1..n 
software components

Implements CF Device, 
Resource & 

DomainManager

1

0..n

1

0..n
Application<<create>>

11 11
described by

1..n

1

1..n

+Proxy 1

0..n
1

0..n
1



SCA Technical Overview
16 - 20 September 2002

Day 1 - 107



SCA Technical Overview
16 - 20 September 2002

Day 1 - 108

Hardware Architecture

• HW described in Object Oriented terms
– consistent with SW Architecture description
– reinforces concept that application functions can be 

implemented in either HW or SW
• HW not specified to level that SW is

– domain constraints will drive HW implementation choices
• General rules apply to provide for HW device portability 

where possible



SCA Technical Overview
16 - 20 September 2002

Day 1 - 109

Hardware Rule Set

• Each HW device provided with Domain Profile files
• HW Critical Interfaces defined in an ICD

– available without restriction
– critical interfaces defined a replaceable device boundaries

• HW Critical Interfaces in accordance with commercial / 
government standards
– exception allowed for performance but open documentation of 

non-standard interfaces required



SCA Technical Overview
16 - 20 September 2002

Day 1 - 110



SCA Technical Overview
16 - 20 September 2002

Day 1 - 111

Why APIs are Defined in SCA

• Standardized APIs are essential for portability of 
applications and interchangeability of devices.

• APIs guarantee Service Provider and User can 
communicate regardless of OE or programming 
language.



SCA Technical Overview
16 - 20 September 2002

Day 1 - 112

APIs are Located at Logical Boundaries 
Common to Waveforms

Application Program Interfaces

Core Framework (CF)
Commercial Off-the-Shelf

(COTS)

Applications

OE

      Red Hardware Bus

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Serial Interface Services

Board Support Package (Bus Layer)

Black Hardware Bus

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Serial Interface Services

Board Support Package (Bus Layer)

Operating System

Core Framework IDL

Non-CORBA
Modem

Components

Non-CORBA
Security

Components

Non-CORBA
 I/O

Components

RF

Modem
Components

Link, Network
Components

Security
Components

Modem
Adapter

Security
Adapter

Security
Adapter

 I/O
Adapter

 I/O
Components

MAC API LLC/Network API LLC/Network API

Link, Network
Components

Security API

Operating System

Physical 
API

I/O API

(“Logical Software Bus” via CORBA)



SCA Technical Overview
16 - 20 September 2002

Day 1 - 113

SCA API Decisions

• Why waveform-specific? 
– desire is single API at an interface
– the range and variety of services at the various interfaces, most 

notably the MAC and Physical, make a common API for all 
waveform applications large and burdensome for resource 
constrained implementations

– Building Blocks have been defined to provide as much 
commonality across waveform APIs as possible

• Goal is a standard API set for each waveform



SCA Technical Overview
16 - 20 September 2002

Day 1 - 114

SCA APIs

• I/O
– provides a common audio/data interface at a domain 

component containing voice and/or data processing
• Security (in Security Supplement)
• Network

– provides a component level interface used for waveform 
network behavior

• Logical Link Control
– component level interface used by waveform applications 

requiring link layer behavior (Data Link Service conforming to 
the Open Systems Interconnect (OSI) model for networking 
systems)



SCA Technical Overview
16 - 20 September 2002

Day 1 - 115

SCA APIs (cont’d)

• Medium Access Control (MAC)
– analogous to and fully supports services of the Medium Access 

Control sub-layer of the OSI Link Layer model
– provided for waveform applications that have medium access 

control behavior (e.g. transmit/receive time slot control in 
TDMA, error correction coding control, etc.)

• Physical (Real-time & non-Real-time)
– Real-time provides for translation from bits/symbols to RF and 

RF to bits/symbols for waveform transmission and reception.
– non-Real-time provides for initialization and configuration



SCA Technical Overview
16 - 20 September 2002

Day 1 - 116



SCA Technical Overview
16 - 20 September 2002

Day 1 - 117

SCA Security Supplement

• Defines security requirements for JTRS
• Identifies behavioral impacts of these requirements
• Defines an API set to support the requirements
• Uses Common Criteria Evaluation Assurance Levels 

(EAL) used as a basis for requirements definition
• Written for SECRET System-High (EAL-3) operation but 

does not prohibit higher levels of assurance



SCA Technical Overview
16 - 20 September 2002

Day 1 - 118

Security Requirements

• Requirements are broken down into the following 
elements
– Cryptographic Subsystem (CS/S)
– INFOSEC Boundary
– Equipment Level Boundary
– JTRS Security Policy



SCA Technical Overview
16 - 20 September 2002

Day 1 - 119



SCA Technical Overview
16 - 20 September 2002

Day 1 - 120

SCA Procurement Impacts

• Contracts for SCA-based products may contain 
additional implementation guidance / requirements than 
traditional procurements
– Separate hardware and software suppliers
– Standardized hardware guidance
– Buyer-furnished software applications
– Adherence to specific APIs

• Compliance to SCA requirements must be verified
– Compliance certification using approved methods, tools



SCA Technical Overview
16 - 20 September 2002

Day 1 - 121

SCA and System Design
CONTRACT / 

STATEMENT OF WORK SCAORD

System 
Specification

System 
Design 

Document

Software
Specs

Hardware
Specs

SCA Impacts System Design at Several LevelsSCA Impacts System Design at Several Levels



SCA Technical Overview
16 - 20 September 2002

Day 1 - 122

SCA and SW Applications

SCA

API
Supplement

Security 
Supplement

Framework
Control & 
Services

Framework
Control & 
Services

System 
Services

Framework
Control & 
Services

Framework
Control & 
Services

Waveforms

Crypto S/S,
INFOSEC

Algorithms

Framework
Control & 
Services

Framework
Control & 
Services

Logical
Devices

Security
Policies

Requirements
Specification

Waveform
Specifications

UIC

Operational
Doctrine

HCI



SCA Technical Overview
16 - 20 September 2002

Day 1 - 123

System Design Decisions

• Operating System 
– acquired commercially by JTRS supplier

• CORBA Middleware
– acquired commercially by JTRS supplier

• Framework Control and Service Applications
– developed by JTRS supplier
– acquired commercially by JTRS supplier
– provided by JTRS JPO (future)

JTRS Supplier
Determines Source of Operating Environment

JTRS Supplier
Determines Source of Operating Environment



SCA Technical Overview
16 - 20 September 2002

Day 1 - 124

JTRS Procurement Authority
Determines Source of Software Applications

JTRS Procurement Authority
Determines Source of Software Applications

System Design Decisions (cont'd)

• Software Applications
– developed by JTRS supplier
– provided by JTRS JPO
– provided by procuring authority

• Hardware Implementation
– developed by JTRS supplier
– identified by procuring authority



SCA Technical Overview
16 - 20 September 2002

Day 1 - 125

SCA Summary

• SCA has impact on traditional radio communications 
procurements, requiring additional program planning 
and direction to suppliers

• SCA becomes an important source of requirements 
throughout the system design process



SCA Technical Overview
16 - 20 September 2002

Day 1 - 126

SCA Documentation

• SCA Specification
• Currently released - version 2.2

– API Supplement
• Currently released - version 1.0
• Errata was published with SCA v2.1

– Security Supplement
• Currently released - version 1.0
• Errata was published with SCA v2.1



SCA Technical Overview
16 - 20 September 2002

Day 1 - 127

SCA Documentation

• Support and Rationale Document
– No requirements; provides background rationale for decisions 

that drove the SCA 
– Currently released - version 2.2

• SCA Developers Guide
– Currently released - version 1.1

• APIs for I/O and HF-ALE, SINCGARS, Have Quick, Line 
of Sight waveforms



SCA Technical Overview
16 - 20 September 2002

Day 1 - 128


